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Abstract—This work proposes a deep reinforcement learning
(RL) based model to devise a hospital augmentation plan
for a particular region. It works on the cost-benefit over a
range of geographic regions and proposes the best place to
set up or augment hospital capacity. The stochastic nature
of hospital bed demands makes it challenging to devise an
appropriate augmentation scheme. We project hospital bed
numbers as a capacity determiner and consider populations
of different walks to analyze future demand economics. A
particular geographic region is divided into several sub-regions
based on the local administration body. The RL agent works
on the age group, population growth, and current bed capacity
to propose a sub-region where augmentation is necessary. We
utilize the Advantage Actor-Critic (A2C) algorithm to minimize
the cumulative cost. The simulation result with actual data
testifies this approach’s superiority over traditional per capita
based and complain based policies.

Index Terms—Hospital bed capacity, reinforcement learning,
deep RL, markov decision process, agent based modeling.

I. INTRODUCTION

The per capita hospital bed capacity of a geographic
region can give us the primary impression of that region’s
healthcare capability. However, the number of people staying
overnight in hospitals in the region is highly stochastic [1],
[2]. Insufficient hospital capacity can cause overcrowding
and deprived critical patients. Opening new hospitals or
expanding the existing hospital capacity is so expensive that
it is not feasible for the authority to maintain a large enough
capacity to serve any number of patients. Hence, the health
authority of a region need to perform a cost-benefit analysis
to determine its expansion plans. The health authority often
faces budgetary constraints for capacity expansion and should
use an appropriate policy to prioritize the expansion needs
[3]. Throughout the paper, we use the hospital augmentation
plan to refer to opening new hospitals or expanding the
existing hospital capacity.

Hospital bed capacity is subject to regular monitoring to
support an area’s growing healthcare needs. Many states
in the US implemented a mechanism called Certificate of
Needs (CON) to regulate the number of hospital beds in
the respective state [3]. The CON mechanism depends on
the projected population growth to determine the future
bed demand, which lacks the consideration of different age
groups, thus it is too general for such a complex and dynamic
problem. A simple augmentation plan based on some flat
number of target occupancy is strictly suboptimum due to

the unaccounted variables. For instance, the large variability
in patients’ age in different hospital wards (i.e., subdivisions)
makes it even harder for the authority to come up with a
detailed augmentation plan [4], [5].

In this work, we consider seven counties of Florida, which
is an attractive retirement home for an increasing number of
elderly people. High population growth and the nationwide
increase of median age [6] indicate more requirement for
healthcare facilities. Besides, elderly people are supposed to
stay longer in hospitals than younger people do. Other than
this steady demand, there are no-notice incidents such as
disease outbreaks, epidemics, increased drug abuse, which
can cause a sudden surge in hospital bed demand. Such inci-
dents can lead to unprecedented loss of life and wealth if the
hospital preparedness measures are not adequate, efficient,
and effective. Recent mishaps for COVID-19 have testified
that existing prediction mechanisms are insufficient to tackle
such demands. In addition to serving for the healthcare of a
community, hospitals are a major revenue as well as employ-
ment provider. Improper decisions in the augmentation plan
can bring havoc to a region’s economy. Therefore, hospitals
or healthcare authorities need appropriate methods to improve
their forecasting to tackle such hazards in the future. A
robust, dynamic, and detailed hospital augmentation plan can
benefit both the government and private parties.

The Markov Decision Process (MDP) models are popu-
lar for sequential decision-making in complex systems [7].
Following a divide-and-conquer approach MDP implements
an optimal policy by sequentially taking an optimum action
at each state. This work formulates the hospital capacity
planning problem as an MDP by considering the existing ca-
pacity, such as hospital beds in several regions, population in
several age groups, and population growth. Due to the high-
dimensional state space, we utilize a Deep Reinforcement
Learning (RL) algorithm, Advantage Actor-Critic (A2C) [8],
to learn the optimal policy for the MDP formulation [9].
Healthcare authority is the MDP agent that takes the hos-
pital expansion actions through A2C. At each time step, its
decision modifies the environment and incurs a cost. The
main contributions of this work are:

• A novel MDP model to define the optimal policy for
hospital capacity expansion.

• A deep RL algorithm that determines the optimal policy
of the MDP to minimize the cumulative cost for a finite



time horizon.
• A comprehensive case study for the Tampa Bay area

using real data to exhibit the advantage of the proposed
policy over traditional myopic policies.

The remainder of the paper is organized as follows.
Section II reviews related literature for hospital capacity
planning. The MDP model is formulated in Section III,
and the deep RL algorithm for the optimal policy is given
in Section IV. The case study for the Tampa Bay area is
presented in Section V. The proposed model and solution
are discussed in Section VI. Finally, the paper is concluded
in Section VII.

II. RELATED WORK

Several studies have been conducted considering a mathe-
matical framework for determining the optimal number of
beds within hospitals and surrounding regions [10], [11].
The hospital bed occupancy literature can be divided into
two main groups. The first includes works related to fore-
casting hospital bed demands across different departments,
Emergency Department visits, and other critical healthcare
resources. These studies vary by time horizon (i.e., 1 hour
to 8 hours after hospital admission), treatment type ( i.e.,
critical care, scheduled treatment), population setting (i.e.,
age range, Medicare, and Medicaid), provider settings (i.e.,
primary care, secondary, and hospital-specific), and source
of data (i.e., administrative claims data, real-time data, and
clinical data) [12]–[18]. However, the main objective of these
studies is to support the existing hospital critical resource
allocation schemes, rather than long-term planning and bed
expansion. In this paper, we are interested in the second
group, which focuses on the long-term capacity planning
and allocation of the hospital beds with a region. Most
of the methods in this group are intended for medium-
or long-term estimates at different regional settings. These
models include the simple ratio method, Michigan’s Bed
Need model, Formula method, The Swiss Health Observatory
(SHO) model, and Current Use Projection Model [11], [19],
[20]. Some of the challenges investigated in the second
group include low accuracy, overestimation of required bed
numbers, and difficulty of demographic predictions [10]. The
uncertainty and variability in estimating hospital occupancy
levels due to the lack of a sophisticated prediction model
might make capacity planning and hospital bed extension
challenging in a region with a rapidly changing population
[2].

More recently, a few studies presented promising data-
driven approaches in forecasting bed occupancy in hospitals
and surrounding regions [19], [21]. Most of these studies
thus far are limited to forecasting critical care bed occu-
pancy using machine learning (ML), in particular regression,
methods. Among ML methods, several variants of neural
networks have been utilized in predicting ICU bed occupancy,
total hospital bed occupancy, and surgical operating room
forecasting [20], [22]. However, ML-based hospital bed ca-
pacity planning and expansion forecast at the regional level
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Fig. 1. Proposed MDP model.

has not been yet properly investigated. Only one study at-
tempted to use an RL-based approach to provide hospital bed
augmentation policy for Bangladesh, but without providing
evidence to validate the proposed model [23]. RL methods
have recently achieved significant theoretical and technical
achievements, leading to a widespread application including
gaming, finance, transportation, and healthcare [24]. In the
healthcare domain, the application of RL has been focused
on diagnosing conditions or forecasting outcomes, but not
explicitly on healthcare policy-making [25]. RL empowers
decision-making capabilities by generating agent-based sce-
narios through an MDP framework for the optimization of
critical resources [26]. Hence, our study aims to develop a
deep RL-based hospital capacity planning policy to minimize
the total cost within a finite time horizon by dynamically
providing the optimal number of beds in a geographical
region.

III. MDP MODEL

MDP formulation is based on the Markov Property, which
suggests that the future state is dependent only on the current
state and action taken by the agent. In our MDP model shown
in Fig. 1, healthcare authority is the MDP agent, and all the
N regions (e.g., counties) served by it forms the environment.
The state at time t, St is defined by the population pnt and
the existing hospital bed capacity bnt of each region, where
n ∈ {1, 2, ..., N}. At each time t, the agent takes action At =
m, which refers to expanding the capacity of mth region
out of the N regions, and receives cost Ct. Furthermore, it
can also decide to do no expansion (At = 0), resulting in
a total of N + 1 choices. The next state St+1 and cost Ct
are function of current state St and action At, satisfying the
Markov property. We next explain the MDP model in detail.

A. State, St
Each region’s current population and hospital bed capacity

collectively defines the state space. The population of the
nth region at time t, pnt = [pn1t , . . . , p

nG
t ], is a vector

of G age groups (e.g., 4 age groups: 0-17,18-44,44-65,
and 65+ years in our simulations). The population at next
time step for the region is pnt+1 = pnt + ∆pnt , where the
population increase vector ∆pnt is stochastic. So, the next
state population depends on current population but is not
controlled by the agent. To implement our model, we require
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the current age-grouped population and a reliable growth
forecast for each region n.

The current hospital capacity for the nth region at time t is
given by bnt = bnt−1+∆bnt = bn0 +

∑t
τ=1 ∆bnτ . Here ∆bnt = 0

unless At = n, i.e., the region is selected for expansion. We
set a suitable number ∆b as a unit for bed capacity expansion
size, and the selected region’s capacity increases by ∆b, i.e.,
bnt = bnt−1+∆b. bn0 is the existing hospital capacity at the start
(t = 0) of an episode for the region. Hence, bnt is controlled
by the MDP agent deterministically.

B. Action, At
The action taken by the agent at time t, At = m, increases

the capacity of the mth region by a fixed quantity ∆b. The
agent can also decide to do no expansion (At = 0), i.e.,
At ∈ {0, 1, 2, ...., N}. The expansion actions (At 6= 0) incurs
augmentation cost, however reduces the future cost of denial
of service (DOS) to the patients. The agent aims to learn
the optimal policy to minimize its total cost over a period of
time by striking a right balance between the augmentation
cost and DOS cost.

C. Cost, Cn
The hospital bed capacity per 1000 people varies between

1.6 (Oregon) – 4.8 (South Dakota) in the US [27], and
between 0.1 (Mali) – 13 (Japan) globally [28]. Thus, there is
some probability for patients exceeding the hospital capacity
in a given day, even for Japan. The places with lower per
capita capacity are expected to face more frequent overflow
of patients and thus denial of treatment. The paper [2]
provides an insight about predicting the number of patient
admission with different Poisson distribution mean for each
day of the week, validated by real-world data. We use a
similar approach with a dynamic Poisson mean for each day
in each region based on the population vector that defines
our state space. We model the number of beds required for
a particular day in the nth region as follows:

rnt ∼ Poisson (λnt (pnt )). (1)

Here λnt is the dynamic Poisson mean for the nth region
at time t, which is a function of the age-grouped population
vector pnt of that region. We approximate this function from
historical data of that region via regression analysis (e.g.,
decision tree regression).

When the existing capacity is less than the required beds
for a day (i.e., bnt < rnt ), rnt − bnt number of patients
will be deprived of treatment. To perform any cost-benefit
analysis with limited resources, we need to represent the pa-
tients’ inconvenience in monetary value. Regional economic
data and existing literature are useful for determining this
monetary value β for each untreated patient. For long term
expansion planning, we can approximate the financial cost
to be proportionate to the number of untreated patients. We
calculate this daily cost as

cnt =

{
β(rnt − bnt ), if rnt − bnt > 0

0, otherwise.

This cost gets summed up over all regions as the DOS cost
for the time step t as

CDOSt =

N∑
n=1

cnt . (2)

Without loss of generality, we assume the expansion
amount ∆b to be fixed as one unit expansion throughout the
time horizon for all regions, which incurs the augmentation
cost Caugt = α. If the agent makes no expansion, then
obviously the expansion cost is Caugt = 0. As a result, the
total cost for time step t is given by

Ct = Caugt + CDOSt . (3)

D. Next State, St+1

In our model, only the selected region’s hospital capacity
increases by ∆b units in the next state; the others remain un-
changed. So, the agent deterministically controls the bedding
capacity of the next state.

bn+1
t =

{
bnt + ∆b, ifAt = n

bnt , otherwise.

Each region’s population for the next state increases by
its population growth projections. Specifically, we model the
growth using a normal distribution with 20 % variation from
the projected increase. Hence, the next state population is
stochastic and is not controlled by the agent.

IV. SOLUTION APPROACH

Our MDP agent aims to minimize the discounted total cost
in T time steps,

CT =

T∑
t=0

γtCt, (4)

where γ ∈ (0, 1) is the discount factor for future cost.
To obtain the optimal policy {At} we need to solve the
following Bellman equation. After i iterations, the agent’s
value function at time step t becomes

V i(bt, pt) = min
At

{
E
[
Ct + γV i−1(bt+1, pt+1)

] }
,

where bt = [b1t , . . . , b
N
t ] represents the hospital capacity of all

regions collectively. Similarly, pt = [p1t , . . . , p
N
t ) represents

the population vector of all regions.
Since model-based dynamic programming solutions are

not feasible for this high-dimensional MDP, we follow a
model-free deep RL approach.

The Advantage Actor-Critic (A2C) algorithm, which is an
adaptation of policy gradient-based algorithm REINFORCE
[8], fits a continuous state environment. The A2C uses the
advantage functions for policy update, which reduces the
REINFORCE algorithm’s variance.

The actor-network, also known as the policy network,
outputs probability for each action value through a softmax
function. It aims to find the gradient of expected return J(πφ)
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Algorithm 1 A2C algorithm for hospital capacity planning

Input: discount factor γ, learning rate, number of regions
R and number of episodes E
Initialize Actor network with random weights φ and critic
network with random weights θ
for episode = 1, 2, ..., E do

Initialize Health care state S0 = (b0, p0)
for t = 1, 2, ..., T do

for Regions = 1, 2, ..., R do
for d = 1, 2, ..., days do

Generate the number of patient requiring
overnight accommodation from Eq. (1).
Calculate cost due to unattended patients from
Eq. (2).

end for
end for
Select action At using Eq. (5).
Execute action At and observe cost Ct from Eq. (3).
Store transitions (St, At, Ct, St+1).
Update actor network φ via Eq. (6).
Update critic network θ through back propagation.

end for
end for

of the policy πφ with respect to the weights φ of the neural
network through the following equation:

∇φJ(πφ) = Eπφ [∇φ log(πφ(At|St))A(St;At)], (5)

where the advantage function is given by

A(St;At) = γV πφ(St+1;θ) − V πφ(St;θ). (6)

The critic-network learns the value function for each state-
action pair. In Eq. (6), V πφ(St;θ) is the output of critic
network for weight matrix θ. A pseudocode for the A2C
algorithm is given in Algorithm 1.

V. CASE STUDY

We evaluate our deep RL-based policy using real data from
the Tampa Bay region, one of Florida’s largest metropolitan
areas situated along the Gulf of Mexico. Around 3 million
people live in its seven counties with a high elderly popu-
lation. This metropolitan area is growing fast with a yearly
population growth of 1.5% [29], providing a suitable testbed
for our case study.

A. Hospital Occupancy Forecasting

Hospital bed requirement for a region depends on multiple
factors that might be infeasible to capture. However, for an
area of considerable size (e.g., with inhabitants more than
100,000), we can model it through age-segregated population
data. We use the age-segregated population and hospital
admission data for all the 7 counties of Tampa Bay between
2010 and 2017 [30]. Table I shows that on average more
people are admitted to hospital on weekdays than weekends,
thus we use separate models to fit weekdays and weekend
hospital admission. Higher than 90% accuracy is achieved in

Table I: Average hospital admission per day for the 7 counties
of the Tampa Bay region.

Year 2015 2016 2017
County Wkday Wkend Wkday Wkend Wkday Wkend

Hernando 88 60 91 64 94 66
Hillsborough 516 356 527 357 361 522

Manatee 137 89 137 89 143 94
Pasco 225 158 229 161 230 161

Pinellas 417 299 432 298 425 300
Polk 291 205 295 203 304 207

Sarasota 151 92 152 94 153 94

Fig. 2. Average accuracy in terms of predicting hospital
admission for different regression models for weekdays and
weekends. Results are obtained using the data from [30].

predicting hospital admission for 2017, as shown in Fig. 2, by
training different regression algorithms on data from 2010-
2016. Decision tree regression with Mean Absolute Error
(MAE) achieves around 94% accuracy for both weekdays and
weekend data. Further investigation of regression analysis
and more factors to predict hospital admission may provide
better results. However, to keep the focus on our deep RL-
based policy, we proceed with the decision tree regression
with MAE for predicting the dynamic Poisson mean in
Eq. 1 based on the concurrent age-segregated population
projections from [31]. We further add 20% variance to the
Poisson mean to account for the day-to-day variation. The
fact sheet in [31] states the average length of stay per
admission as 4.7 days. Hence, we model the number of
people staying at hospital as 4.7 times the random number
generated by the Poisson distribution for a given day.

B. Policies

Apart from the deep RL-based policy, we discuss two other
myopic policies for a 30-year scheme. All the policies take
yearly decisions to augment a maximum of one county with
∆b = 120 hospital bed capacity. We estimate the cost of
adding 120 hospital beds to be α = 100M USD [32], [33].
The cost of not attending a patient is a complex estimation.
We estimate it as β = 0.04M USD based on [34].

1) Per Capita-Based Policy: The number of hospital beds
per 1,000 people is a useful metric to represent a region’s
healthcare condition. Among the US states, Florida ranks
moderately with 2.6 beds per thousand people [27]. However,
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the hospital capacity is not uniformly distributed. Some of the
counties have low per capita hospital capacity, making them
good candidates for capacity expansion. Selecting a county
based on its per capita capacity is a meaningful approach for
the healthcare authority. Moreover, if each county’s per capita
capacity is above a threshold, the authority might decide not
to make any augmentation. We do a grid search between 1
to 5 per capita capacity to find the optimal threshold to be
2.9 beds per 1,000 people, which minimizes the 30-year cost
for this policy.

2) Complaint-Based Policy: It is often complicated to
determine the critical healthcare conditions for making capac-
ity expansion decisions. The number of unattended patients
for the previous year for different counties can provide a
reasonable guideline for the healthcare authority. They may
use this number of deprived patients or complaints as a
decision-making criterion. The authority will augment the
capacity of the county with the most number of yearly
complaints, given that the number is above a threshold. In
our simulation setup, we find that the optimal threshold for
this policy is 70 complaints.

3) Proposed Deep RL-Based Policy: The actor and critic
networks for the deep RL-based policy discussed in Sec-
tion IV are shown in Fig. 3. We use a learning rate of 0.0003
and discount factor γ = 0.99 for the simulation. For the
N = 7 counties, there are G = 4 age group populations
and also the hospital capacity data, which makes the state a
35-dimensional input for the neural network. The actor and
critic networks do not share any hidden layers, but share the
common input. We use three hidden layers consisting of 12,
120 and 48 neurons, respectively. The critic network outputs
one value for the state space. However, the actor-network
outputs N+1 = 8 softmax values representing the probability
of each action for the given state. Fig. 4 shows that the
proposed neural networks converge within 1,000 episodes
and learn the optimal policy.

Fig. 4. Convergence of the deep RL-based policy.

Policy Cumulative cost Reduction Complaints Reduction
Per capita-based 4323$ 0 % 32775 0 %
Complaint-based 2708 $ 37.36 % 28272 13.74 %
Deep RL-based 2238 $ 48.23 % 21566 34.2 %

Table II: Cumulative cost and complaints over a 30-year
timeline.

C. Comparative Analysis

We perform comparative analysis among the policies ex-
plained above in terms of the total cost and total complaints
received due to unattended patients for the 30-year timeline
(Fig. 5). The per capita policy incurs maximum cost and
complaints compared to the other two policies. This result
testifies that the number of hospital admissions is better
captured by age-grouped population data, consistent with the
general understanding that some age groups require more
medical attention (especially children and older people). Per
capita-based policy, without age-grouped population distribu-
tion incurs 4,323 million USD cost and 32,775 complaints
on average for 30 years. We use these values to evaluate the
benefit of the other policies.

The complaint-based policy works well to bring down
the cost to 2,708 million USD and complaints to 28,272.
The complaint-based policy is successful to some extent
as it focuses on the outcome by making decisions based
on complaints. However, this reactive policy is always one
step behind since its decision is based on previous years
experience. This is where the proposed deep RL-based policy
outperforms all the other approach. It intuitively puts optimal
weights to the corresponding feature that determines the
future cost. This policy gives the best result by minimizing
the cost to 2,238 million USD and complaints to 21,566. The
comparative analysis is summarized in Tab. II.

VI. DISCUSSIONS

We proposed an MDP framework to devise a hospital
augmentation plan and illustrated it for the Tampa Bay Area.
The proposed model works on age-segregated population
data, which is more useful than straightforward population
growth rate-based methods. This work is also more realistic
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Fig. 5. Comparison between the per capita-based, the complaint-based, and the proposed deep RL-based policy in terms of
cumulative cost (left), and number of cumulative complaints (right).

in assessing the hospitalization demands as it works on week-
days and weekend demand separately. It is able to provide
a dynamic data-driven policy over a long period. However,
there are several limitations for the proposed model. First
of all, age-segregated population data might not be enough
to predict the future hospital bed requirements. So, looking
for other critical factors will make the model more robust.
Secondly, this work assumes a fixed cost of α and β for all
regions, which is limited in the sense that building the same
structure in a crowded city is far costlier than building it
in a rural area. Another shortcoming of the model is that it
assumes that one region’s patient does not seek medical help
from a neighboring region. Addressing these shortcomings
may provide many future research directions.

VII. CONCLUSIONS

This paper showed that hospital bed augmentation plans
need dynamic and robust mechanisms to deal with future
demand. We proposed an MDP formulation to cost-benefit
analysis for augmentation plans for a particular geographic
region. We utilized the actor-critic (A2C) deep RL framework
to find the optimal policy for the Tampa Bay region. The pro-
posed policy significantly outperforms the myopic policies
which depend on a fixed per capita hospitalization estimate
and complaints from the previous year. Although illustrated
only for Tampa, Florida, the proposed model is applicable to
other regions where sufficient data are available.
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