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Abstract—Intelligent vehicular systems and smart city appli-
cations are the fastest growing Internet of things (IoT) imple-
mentations at a compound annual growth rate of 30%. In view
of the recent advances in IoT devices and the emerging new
breed of IoT applications driven by artificial intelligence (AI),
fog radio access network (F-RAN) has been recently introduced
for the fifth generation (5G) wireless communications to overcome
the latency limitations of cloud-RAN (C-RAN). We consider the
network slicing problem of allocating the limited resources at
the network edge (fog nodes) to vehicular and smart city users
with heterogeneous latency and computing demands in dynamic
environments. We develop a network slicing model based on a
cluster of fog nodes (FNs) coordinated with an edge controller
(EC) to efficiently utilize the limited resources at the network
edge. For each service request in a cluster, the EC decides which
FN to execute the task, i.e., locally serve the request at the edge,
or to reject the task and refer it to the cloud. We formulate
the problem as infinite-horizon Markov decision process (MDP)
and propose a deep reinforcement learning (DRL) solution to
adaptively learn the optimal slicing policy. The performance of
the proposed DRL-based slicing method is evaluated by com-
paring it with other slicing approaches in dynamic environments
and for different scenarios of design objectives. Comprehensive
simulation results corroborate that the proposed DRL-based EC
quickly learns the optimal policy through interaction with the
environment, which enables adaptive and automated network
slicing for efficient resource allocation in dynamic vehicular and
smart city environments.

Index Terms—Intelligent Vehicular Systems, Network Slicing,
Deep Reinforcement Learning, Edge Computing, Fog RAN.

I. INTRODUCTION

The fifth generation (5G) wireless communication systems
will enable massive Internet of Things (IoT) with deeper
coverage, very high data rates of multi giga-bit-per-second
(Gbps), ultra-low latency, and extremely reliable mobile con-
nectivity [1], [2]. It is anticipated that the IoT devices will
constitute the 50% of the 29.3 billion connected devices
globally by 2023, where Internet of Vehicles (IoV) and smart
city applications are the fastest growing IoT implementations
at annual growth rates of 30% and 26%, respectively [3]. The
emerging new breed of IoT applications which involve video
analytics, augmented reality (AR), virtual reality (VR), and
artificial intelligence (AI) will produce an annual worldwide
data volume of 4.8 zettabyte by 2022, which is more than
180 times the data traffic in 2005 [4]. Equipped with variety

1This work is partially funded by the U.S. National Science Foundation
(NSF) under the grant ECCS-2029875.

of sensors, radars, lidars, ultra-high definition (UHD) video
cameras, GPS, navigation system, and infotainment facilities,
a connected and autonomous vehicle (CAV) will generate 4.0
terabyte of data in a single day, of which 1.0 gigabyte need
to be processed every second [5].

A. Cloud and Fog RAN
Through centralization of network functionalities via virtu-

alization, cloud radio access network (C-RAN) architecture
is proposed to address the big data challenges of massive
IoT. In C-RAN, densely-deployed disseminated remote radio
units (RRUs) are connected through high capacity fronthaul
trunks to a powerful cloud controller (CC) where they share
a vast pooling of storage and baseband units (BBUs) [6]. The
centralized computing, processing, and collaborative radio in
C-RAN improves network security, flexibility, availability, and
spectral efficiency. It also simplifies network operations and
management, enhances capacity, and reduces energy usage
[7]. However, considering the fast growing demands of IoT
deployments, C-RAN lays overwhelming onus on cloud com-
puting and fronthaul links, and dictates unacceptable delay
caused mainly by the large return transmission times, finite-
capacity fronthaul trunks, and flooded cloud processors [8].
The latency limitation in C-RAN makes it challenging to
meet the desired quality-of-service (QoS) requirements, espe-
cially for the delay-sensitive IoV and smart city applications
[9]. Hence, an evolved architecture, fog RAN (F-RAN) is
introduced to extend the inherent operations and services of
cloud to the edge [10]. In F-RAN, the fog nodes (FNs) are
not only restricted to perform the regular radio frequency
(RF) functionalities of RRUs, but they are also equipped
with computing, storage, and processing resources to afford
the low latency demand by delivering network functionalities
directly at the edge and independently from the cloud [11].
However, due to their limited resources compared to the
cloud, FNs are unable to serve all requests from IoV and
smart city applications, and hence they should utilize their
limited resources intelligently to satisfy the QoS requirements
in synergy and complementarity with the cloud [12].

B. Network Slicing for Heterogeneous IoV and Smart City
Demands

IoV and smart city applications demand various computing,
throughput, latency, availability, and reliability requirements
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to satisfy a desired level of QoS. For instance, in-vehicle
audio, news, and video infotainment services are satisfied
by the traditional mobile broadband (MBB) services of high
throughput and capacity with latency greater than 100 ms [13].
Cloud computing plays an essential role for such delay-tolerant
applications. Other examples of delay-tolerant applications
include smart parking [14], intelligent waste management
[15], infrastructure (e.g., bridges, railways, etc.) monitoring
[16], air quality management [17], noise monitoring [18],
smart city lighting [19], smart management of city energy
consumption [20], and automation of public buildings such as
schools, museums, and administration offices to automatically
and remotely control lighting and air condition [21].

On the other hand, latency and reliability are more critical
for other IoV and smart city applications. For instance, deploy-
ment scenarios based on enhanced mobile broadband (eMBB)
require latency of 4.0 ms. Enhanced vehicle-to-everything
(eV2X) applications demand 3-10 ms latency with packet loss
rate of 10−5. Ultra-reliable and low-latency communications
(URLLC) seek latency level of 0.5-1.0 ms and 99.999%
reliability [22], [23], e.g., autonomous driving [24]. AI-driven
and video analytics services are considered both latency-
critical and compute-intensive applications [25]. For instance,
real-time video streaming for traffic management in intelligent
transportation system (ITS) [26] requires a frame rate of
100 Hz, which corresponds to a latency of 10 ms between
frames [13]. Future electric vehicles (EVs) and CAVs are
viewed as computers on wheels (COWs) rather than cars
because they are equipped with super computers to execute
extremely intensive computing tasks including video analytics
and AI-driven functionalities. However, with the high power
consumption associated with such intense computing, COWs
capabilities are still bounded in terms of computing power,
storage, and battery life. Hence, computing offloading to fog
and cloud networks is inevitable [27]. Especially in a dynamic
traffic and load profiles of dense IoV and smart city service
requests with heterogeneous latency and computing needs,
partitioning RAN resources virtually, i.e., network slicing [28],
assures service customization.

Network slicing is introduced for the evolving 5G and be-
yond communication technologies as a cost-effective solution
for mobile operators and service providers to satisfy various
user QoS [29]. In network slicing, a heterogeneous network
of various access technologies and QoS demands that share a
common physical infrastructure is logically divided into virtual
network slices to improve network flexibility. Each network
slice acts as an independent end-to-end network and supports
various service requirements and a variety of business cases
and applications. In this work, we consider the network slicing
problem of adaptively allocating the limited edge computing
and processing resources in F-RAN to dynamic IoV and smart
city applications with heterogeneous latency demands and
diverse computing loads.

II. RELATED WORK

There is an increasing number of works in the literature
focusing on network slicing as an emerging network architec-
ture for 5G and future technologies. Issues and challenges of

network slicing as well as the key techniques and solutions
for resource management are considered in [28]. The work in
[30] provides an overview of various use cases and network
requirements of network slicing. Network slicing for resource
allocation in F-RAN is considered in [31]–[33], where network
is logically partitioned into two slices, a high downlink-
transmission-rate slice for MBB applications, and a low-
latency slice to support URLLC services. While [31] focuses
on efficiently allocating radio resources and satisfying various
QoS requirements, [32] investigates a joint radio and caching
resource allocation problem. For massive IoT environment, the
authors in [33] proposed a hierarchical architecture in which a
global resource manager allocates the radio resources to local
resource managers in slices, which assign resources afterwards
to their users. Two-level resource management in C-RAN is
explored in [34], [35]: an upper level for allocating fronthaul
capacity and computing resources of C-RAN among multiple
wireless operators, and a lower level for controlling the
allocation of C-RAN radio resources to individual operators.

Reinforcement learning (RL) is embraced as a powerful tool
to deal with dynamic network slicing for adaptive resource
allocation in F-RAN. In [4], [29], [36], the RL methods of
Q-learning (QL), Monte Carlo, SARSA, expected SARSA,
and dynamic programming are utilized to learn the optimal
resource allocation policy for a single fog node. The work [37]
follows the problem formulation in [4] with an extension to
spectrum sharing between 5G users and incumbent users. As
the complexity of the control problem increases with more fog
nodes, deep RL (DRL), which integrates deep neural networks
(DNN) with RL, is more advantageous to cope with the large
state and action spaces [38].

A. Deep RL for Network Slicing

Applying DRL as a solution for core network slicing is
investigated in [39], [40]. In [39], a particular scenario with
three service types (VoIP, video, URLLC) and hundred users is
considered. Resource reconfiguration of core network slices is
studied in [40] with the aim of minimizing long-term resource
consumption. DRL-based centralized agent for C-RAN slicing
is investigated in [41]–[45]. In [41], Deep Q-network (DQN)
is utilized by a cloud server to optimally manage centralized
caching and radio resources and support two transmission-
mode network slices, hotspot slice which supports high-
transmission-rate users for MBB applications, and vehicle-
to-infrastructure slice for delay-guaranteed transmission. For
better radio resource management, a DRL agent is used as a
slice manager in [43] to schedule users into three slice types,
best effort rate, constant bit rate, and minimum bit rate slices.
In [44], a DRL agent at a centralized controller manages the
allocation of shared radio resources (bandwidth) among multi-
ple base stations and different network slices (VoLTE, eMBB,
and URLLC) to maximize spectrum efficiency and service
level agreements. A general network slicing model is proposed
by [45] in which an owner of a network provides physical
resources to tenants (service providers) to meet the service
demand of their end users. With the aim of maintaining high
quality of service and maximizing the long-term revenue of
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service providers through minimizing the reconfiguration cost,
a centralized DRL agent reconfigures the allocated resources
for two network slices, eMBB and URLLC.

Single base station slicing model is considered in [42],
[46]–[49]. C-RAN with single base station is investigated in
[42], where Generative-adversarial-network distributed DQN
(GAN-DDQN) is examined for dynamic bandwidth slicing
among network slices, each of which supports users of a
particular service type. The dependency of radio resource
allocation and the number of slices supported by a single BS is
studied by [46], in which distributed DRL is utilized to achieve
optimal and flexible radio resource allocation regardless of
the number of slices. The work in [47] follows [39] where a
single base station provides three service types (video,VoLTE,
URLLC) and decides the bandwidth to allocate for each user
request. In a vehicular network, [48] employs a DRL agent
at a single base station to allocate radio resources for users
that belong to four slices, cellular high-definition television
slice, cellular ultra-low latency slice, and two device-to-device
slices, one from each cellular slice. In [49], a DRL agent at a
single base station is exploited to allocate uplink bandwidth to
mobile users from various slices with the aim of maximizing
uplink throughput and minimizing energy cost. [50] utilizes
DQN to dynamically select the best slicing configuration
in WiFi networks. DRL slicing in a hierarchical network
architecture for dynamic resource reservation is studied in
[51], in which the infrastructure provider assigns unutilized
resources to network slices maintaining a minimum resource
requirement and demand in each slice, where DRL then
is employed to efficiently manage reserved resources and
maximize QoS.

B. Research Gaps and Proposed Improvements

Despite the growing literature, still there exists a significant
research gap: adaptively satisfying the QoS requirements of
the URLLC applications while efficiently utilizing the local
resources in F-RAN. Motivated by this problem, we provide a
novel network slicing technique for sequentially allocating the
FNs’ limited computing and processing resources at the net-
work edge to various vehicular and smart city applications with
heterogeneous latency needs. The proposed technique ensures
the efficient utilization of the edge resources in dynamic traffic
profiles and task loads. Specifically, this paper contributes to
resolving the following limitations of the existing works.
• Firstly, an uncoordinated DRL-based network slicing and

a single fog node slicing model as in [4], [29], [37], [46]–
[49] are not an ideal network slicing approach for 5G
and future technologies. Especially in dynamic environ-
ments, coordination among fog nodes is needed for more
efficient utilization of edge resources while satisfying
the QoS needs of users. In this paper, we present a
coordinated network slicing model based on multiple fog
nodes cooperating through an edge controller.

• Secondly, a centralized DRL-based cloud controller for an
entire network to manage resource allocation among vari-
ous network slices as in [34], [35], [40]–[45] will have la-
tency limitations, especially for URLLC-based IoV, V2X,

and smart city applications, such as autonomous driving.
Whereas, distributed and independent edge controllers
(ECs), which are fog nodes that serve as cluster heads,
as proposed in this paper can avoid large transmission
delays and satisfy the desired level of QoS at FNs by
making local real-time decisions for the received service
requests in a cluster.

• Thirdly, a fixed DRL-based network slicing approach as
in [31]–[33] with dedicated fog access point resources
for the URLLC slice and dedicated remote radio heads
for the MBB slice can cause inefficient utilization of
edge resources, especially in a dynamic environment. The
nature of many smart city and IoV applications (e.g., au-
tonomous vehicles) requires continuous edge capabilities
everywhere in the service area, hence radio, caching and
computing resources need to be available at the edge.
In practice, the population of delay-sensitive and high-
data-rate services dynamically varies over time, and as
a result a fixed URLLC or MBB slice will be under-
utilized during light demand for low-latency or high-
speed services, respectively. A more flexible network
slicing method as proposed in this paper would smartly
adapt to the environment. We provide an infinite-horizon
Markov decision process (MDP) formulation and a DRL
algorithm to adaptively learn the optimal network slicing
policy by closely interacting with the IoV and smart city
environment.

• Lastly, a hard DRL-based network slicing and hierarchi-
cal slicing architecture as in [33], [39], [40], [45], [51]
require frequent physical shifting of resources, and hence
cannot address dynamic environments with changing
demands in a cost-efficient manner. With hard slicing,
it will be costly and impractical for cellular operators
and service providers to keep adding and transferring
further infrastructural assets, i.e., capital expenditure
which includes transceivers (TRX) and other radio re-
sources, computing and signal processing resources such
as, BBUs, CPUs and GPUs, as well as caching resources
and storage data centers. Such major network changes
could be considered as part of network expansion plans
over time. In this work, we propose a cost-efficient,
soft (i.e., virtual) network slicing method in F-RAN.
We present extensive simulation results to examine the
performance and adaptivity of the proposed DRL-based
network slicing method in diverse intelligent vehicular
systems and smart city environments and different per-
formance objectives.

The remainder of the paper is organized as follows. Section
III introduces the network slicing model. The proposed MDP
formulation for the network slicing problem is provided in
Section IV. Optimal policies and the proposed DRL algorithm
are discussed in Section V. Simulation results are presented in
Section VI, and the paper is concluded in Section VII. A list
of notations used throughout the paper is provided in Table I.

III. NETWORK SLICING MODEL

We consider the F-RAN network slicing model for IoV
and smart city shown in Fig. 1. The two logical network
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TABLE I: Summary of Notations

Notation Description
k cluster size
fi fog node (FN) in cluster, i ∈ {1, . . . , k}
Ni list of neighboring FNs to fi
C an edge cluster
?
fi the FN which serves as edge controller
f̂ primary FN which receives the request
f̄ serving FN
ut utility of a service request at time t
uh threshold for high utility
U set of utilities
ct computing resources for a task at time t
C set of required computing resources
ht holding time for a computing task at time t
H set of holding times
bit number of occupied resources for fi at time t
lit computing load of fi at time t
Lt task load defined as ct × ht
Ni resource capacity of fi
st state at time t
s′ successor state
S set of states
at action taken at st
a′ successor action at s′
a∗ optimal action
A set of actions
Ã set of possible serve actions
rt reward collected for taking at at st
rL reward portion for handling a task load L
R rewarding system
mh number of served high-utility tasks
ml number of served low-utility tasks
m total number of served tasks
Mh total number of received high-utility tasks
Ml total number of received low-utility tasks
M total number of received tasks
ωg weight for GoS
ωu weight for resource utilization
π policy for taking actions
π∗ optimal policy
Gt return from time t onward
V (s) state-value function of s
V ∗(s) optimal state-value function
Q(s, a) action-value function
Q∗(s, a) optimal action-value function

w DNN model weights
ŵ target DNN model weights
Q̂ output of target DNN model for an input state s
Q̃ output of DNN model for an input state s
E IoV and smart city environment
D capacity of DNN replay memory
γ reward discount factor
α learning rate
ε probability of random action
n batch size
τ ŵ update interval
ρ target update rate

slices, cloud slice and edge slice, support multiple radio
access technologies and serve heterogeneous latency needs
and resource requirements in dynamic IoV and smart city
environments. The hexagonal structure represents the coverage
area of fog nodes (FNs) in the edge slice, where each hexagon
exemplifies an FN’s footprint, i.e., its serving zone. An FN
in an edge cluster is connected through extremely fast and
reliable optical links with its adjacent FNs whose hexagons
have a common side with it. FNs in the edge slice are also
connected via high-capacity fronthaul links to the cloud slice
which includes a powerful cloud controller (CC) of massive
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Fig. 1: Network slicing model. Edge slice is connected to cloud
slice through high-capacity fronthaul links represented by solid
lines. Solid arrows represent edge service to satisfy QoS, and
dashed arrows represent task referral to the cloud-slice to save
the limited resources of edge slice.

computing capabilities, a pool of huge storage capacity, cen-
tralized baseband units (BBUs), and an operations and main-
tenance center (OMC) which monitors the key performance
indicators (KPIs) and generates network reports. To ensure
the best QoS for the massive smart city and IoV service
requests, especially the URLLC applications and to mitigate
the onus on the fronthaul and the cloud, FNs are equipped with
computing and processing capabilities to independently deliver
network functionalities at the edge of network. However, the
edge resources at FNs are limited, and therefore need to be
used efficiently.

In an environment densely populated with low-latency ser-
vice requests, it is rational for the FNs to route delay-tolerant
applications to the cloud and save the limited edge resources
for delay-sensitive applications. However, in practice, smart
city and IoV environments are dynamic, i.e., a typical en-
vironment will not be always densely populated with delay-
sensitive applications. A rule-based network slicing policy
cannot ensure efficient use of edge resources in dynamic
environments as it will under-utilize the edge resources when
delay-sensitive applications are rare. On the other hand, a sta-
tistical learning policy can adapt its decisions to the changing
environment characteristics. Moreover, it can learn to prioritize
low-load delay-sensitive applications over high-load delay-
sensitive ones.

We propose using edge controllers (ECs) to efficiently
manage the edge resources by enabling cooperation among
FNs. In this approach, FNs are grouped in clusters, each
of which covers a particular geographical area, and manages
the edge resources in that area through a cluster head called
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EC. The cluster size k is a network design parameter which
represents the number of coordinated FNs in an edge cluster.
An FN in each cluster is appointed as EC to manage and
coordinate edge resources at FNs in the cluster. The EC is
nominated by the network designer mainly based on its central
geo location among the FNs in the cluster, like f1 and f3 in Fig.
1. Note that unlike the cloud controller, the edge controller
is close to the end users as it is basically one of the FNs
in a cluster. Also, the cluster size k is constrained by the
neighboring FNs that cover a limited service area such as a
downtown, industrial area, university campus, etc.

All FNs in an edge cluster are connected together and with
the EC through super-speedy reliable optical links. The EC
monitors all individual FN internal states, including resource
availability and received service requests, and decides for each
service request received by an FN in the cluster. For each re-
ceived request, the EC chooses one of the three options: serve
at the receiving FN (primary FN), serve at a neighboring FN,
or serve at the cloud. Each FN in the cluster has a predefined
list Ni of neighboring FNs, which can help serving a received

service request. For instance, C = {f1, f2, . . . ,
?

fi, . . . , fk} is an

edge cluster of size k, where
?

fi denotes the EC which can be
any FN in the cluster C. The network designer needs to define
a neighboring list Ni ⊆ {C−fi} for each FN in the cluster. An
FN can hand-over service tasks only to its neighbors. Dealing
with IoV and smart city service requests, we call the FN which
receives a request the primary FN f̂ , and call the FN which
actually serves the request utilizing its resources the serving
FN f̄ . Depending on the EC decision, the primary FN or one
of its neighbors can be the serving FN, or there can be no
serving FN (for the decision to serve at the cloud).

An IoV or smart city application attempts to access the
network by sending a service request to the primary FN,
which is usually the closest FN to the user. The primary
FN checks the utility u ∈ U = {1, 2, . . . , umax}, i.e., the
priority level of executing the service task at the edge, analyzes
the task load by figuring the required amount of resources
c ∈ C = {1, 2, . . . , cmax} and holding time of resources
h ∈ H = {1, 2, . . . , hmax}, and sends the EC the task input
(ut, ct, ht) at time t. Since the service requests are handled
sequentially, the changing number of vehicles and smart city
applications does not cause any problem in decision making.
We consider the resource capacity of the ith FN fi ∈ C is
limited to Ni resource blocks. Hence, the maximum number
of resource blocks to be allocated for a task is constrained by
the FN resource capacity, i.e., c ≤ cmax ≤ Ni. We partition
the time into very small time steps t = 1, 2, ..., and assume
a high-rate sequential arrival of IoV and smart city service
requests, one task at a time step. ECs should be intelligent to
learn how to decide (which FN to serve or reject) for each
service request, i.e., how to sequentially allocate limited edge
resources, to achieve the objective of efficiently utilizing the
edge resources while maximizing the grade-of-service (GoS)
defined as the proportion of served high-utility requests to the
total number of high-utility requests received.

A straightforward approach to deal with this network slicing
problem is to filter the received service requests by comparing

their utility values with a predefined threshold. For instance,
consider ten different utilities u ∈ {1, 2, 3, ..., 10} for all
received tasks in terms of the latency requirement, where
u = 10 represents the highest-priority and lowest-latency task
such as the emergency requests from the driver distraction
alerting system, and u = 1 is for the lowest-priority task with
highest level of latency such as a service task from smart waste
management system. Then, a straightforward non-adaptive
solution for network slicing is to dedicate the edge resources
to high-utility tasks, such as u ≥ uh, and refer to the cloud
the tasks with u < uh, where the threshold uh is a predefined
network design parameter. However, such a policy is strictly
sub-optimum since the EC will execute any task which satisfies
the threshold regardless of how demanding the task load is. For
instance, while FNs are busy with serving a few high-utility
requests of high load, i.e., low-latency tasks which require
large amount of resources c and long holding times h, many
high-utility requests with low load demand may be missed. In
addition, this straightforward policy increases the burden on
the cloud unnecessarily, especially when the environment is
dominated by low-utility tasks with u < uh. A better network
slicing policy would consider the current resource utilization
and expected reward of each possible action while deciding,
and also adapt to changing utility and load distributions in the
environment. To this end, we next propose a Markov Decision
Process (MDP) formulation for the considered network slicing
problem.

IV. MDP FORMULATION AT EC

MDP formulation enables the EC to consider expected
rewards of all possible actions in its network slicing decision.
Since closed form expressions typically do not exist for the ex-
pected reward of each possible action at each system state in a
real-world problem, reinforcement learning (RL) is commonly
used to empirically learn the optimum policy for the MDP
formulation. The RL agent (the EC in our problem) learns to
maximize the expected reward by trial and error. That means
the RL agent sometimes exploits the best known actions, and
sometimes, especially in the beginning of learning, explores
other actions to statistically strengthen its knowledge of best
actions at different system states. Once, the RL agents learns
an optimum policy (i.e., the RL algorithm converges) through
managing this exploitation-exploration trade-off, the learned
policy can be exploited as long as the environment (i.e., the
probability distribution of system state) remains the same. In
dynamic IoV and smart city environments, an RL agent can
adapt its decision policy to the changing distributions.

As illustrated in Fig. 2, for each service request in an edge
cluster at time t from an IoV or smart city application with
utility ut, the primary FN computes the number of resource
blocks ct and the holding time ht which are required to serve
the task locally at the edge. Then, the primary FN shares
(ut, ct, ht) with the EC , which keeps track of the available
resources at all FNs in the cluster. If neither the primary
FN nor its neighbors has ct available resource blocks for a
duration of ht, the EC inevitably rejects serving the task at
the edge and refers it to the cloud. Note that in the proposed
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cooperative structure enabled by the EC, such an automatic
rejection will be much less frequent compared to the non-
cooperative structure considered in [4], [29], [37], [46], where
each FN decides for its resources on its own. If the requested
resource blocks ct for the requested duration ht are available
at the primary FN or at least one of the neighbors, then the EC
uses the RL algorithm given in the next section to decide either
to serve or reject. In any case, as a result of the taken action
at, the EC will observe a reward rt and the system state st
will transition to st+1. We next explain the KPIs in an F-RAN
to guide the design of the proposed MDP formulation.

A. Key Performance Indicators

Considering the main motivation behind F-RAN we define
the Grade of Service (GoS) as a key performance indicator
(KPI). GoS is the proportion of the number of served high-
utility service tasks to the total number of high-utility requests
in the cluster, and given by

GoS =
mh

Mh
=

∑T−1
t=0 1{ut≥uh}1{at∈{1,2,...,k}}∑T−1

t=0 1{ut≥uh}
, (1)

where uh is a utility threshold which differentiates the low-
latency (i.e., high-utility) tasks such as URLLC from other
tasks, at ∈ {1, 2, . . . , k} means serve the requested task at
the ith FN in the cluster, fi ∈ C = {f1, f2, . . . , fk}, and 1{·} is
the indicator function taking the value 1 when its argument is
true, and 0 otherwise.

Naturally, a network operator would want the edge resources
to be efficiently utilized. Hence, the average utilization of edge
resources over a time period T gives another KPI:

Utilization =
1

T

T−1∑
t=0

∑k
i=1 bit∑k
i=1 Ni

, (2)

where bit and Ni are the number of occupied resources at
time t, and the resource capacity of the FN fi in the cluster,
respectively. Another KPI to examine the EC performance
is cloud avoidance which is given by the proportion of all
IoV and smart city service requests that are served by FNs in
the edge cluster to all requests received. Cloud avoidance is
reported over a period of time T , and it is given by

Cloud Avoidance =
m

M
=

∑T−1
t=0 1{at∈{1,2,...,k}}

M
, (3)

where m = mh + ml is the number of high-utility and low-
utility served requests at the edge cluster, and M = Mh +Ml

is the total number of high-utility and low-utility received
requests. Note that M − m is the portion of IoV and smart
city service tasks which is served by the cloud, and one of the
objectives of F-RAN is to lessen this burden especially during
busy hours. Cloud avoidance shows a general overview about
the contribution of edge slice to share the load. It gives a sim-
ilar metric as resource utilization, which is more focused on
resource occupancy rather than dealing with service requests
in general. While we use the resource utilization together with
GoS to define an overall performance metric below, cloud
avoidance is still used as a performance evaluation metric in
Sec. VI.

Fig. 2: EC decision for a sample service request received by
f2, and the internal state of the serving FN f1 with N1 = 5
and hmax = 4 (see (6)). The edge cluster size is k = 4 and
f3 is the EC.

To evaluate the performance of an EC over a particular
period of time T , we consider the weighted sum of the main
two KPIs, the GoS and edge-slice average resource utilization
as

Performance = ωgGoS + ωuUtilization. (4)

In Sec. VI, different performance scenarios are considered
to evaluate the proposed DRL scheme with respect to other
slicing approaches in various vehicular and smart city envi-
ronments.

B. MDP Formulation

An MDP is defined by the tuple (S,A, P a, Ra, γ), where
S is the set of states, i.e., st ∈ S, A is the set of actions, i.e.,
at ∈ A = {1, 2, . . . , k, k + 1}, P a(s, s′) = P (st+1 = s′|st =
s, at = a) is the transition probability from state s to s′ when
action a is taken, Ra(s, s′) is the reward received by taking
action a in state s which ends up in state s′, i.e., rt ∈ Ra(s, s′),
and γ ∈ [0, 1] is the discount factor in computing the return
which is the cumulative reward

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
j=0

γjrt+j . (5)

γ represents how much weight is given to the future rewards
compared to the immediate reward. For γ = 1, future rewards
are of equal importance as the immediate reward, whereas
γ = 0 completely ignores future rewards. The objective in
MDP is to maximize the expected cumulative reward starting
from t = 0, i.e., max

{at}
E[G0|s0], where Gt is given by (5), by

choosing the actions {at}.
Before explaining the (state, action, reward) structure in the

proposed MDP, let us first define the task load Lt = ct × ht
as the number of resource blocks required to execute a task
completely, and similarly the existing load lit of FN i as the
number of already allocated resource blocks (see Fig. 2).
• State: We define the system state in a cluster of size k

at any time t as

st = (b1t, l1t, b2t, l2t, . . . , bkt, lkt, f̂t, ut, ct, ht), (6)
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where bit denotes the number of resource blocks in use
at FN i at time t. Note that bi(t+1), li(t+1) and in turn
the next state st+1 are independent of the past values
given the current state st, satisfying the Markov property
P (st+1|s0, s1, s2, ..., st, at) = P (st+1|st, at).

• Action: The EC decides, as shown in Fig. 2, for
each service request by taking an action at ∈ A =
{1, 2, . . . , k, k + 1}, where at = i ∈ {1, 2, . . . , k} means
serve the requested task at the ith FN in the cluster,
fi ∈ C = {f1, f2, . . . , fk}, whereas at = k + 1 means
to reject the job and refer it to the cloud. Note that for a
request received by fi, the feasible action set is a subset
of A consisting of fi, its neighbors Ni, and the cloud.
Fig. 2 illustrates the decision of the EC for a sample
service request received by f2 at time t in an edge cluster
with k = 4 FNs. Note that in this example the action
at = 4 is not feasible as f4 /∈ N2, and the EC took the
action at= 1, which means serve the task by f1. Hence,
f1 started executing the task at t while another two tasks
(striped yellow and green) are in progress. At t+1, two
resource blocks are released as the job in clear-green is
completed. Note that resource utilization of f1 decreased
from 100% at t, i.e., internal busy state with b1t = 5, to
60% at t+1.

• Reward: In general, a proper rewarding system is crucial
for an RL agent to learn the optimum policy of actions
that maximizes the KPIs. The RL agent at the EC collects
an immediate reward rt ∈ Ra(s, s′) for taking action a
at time t from state s which ends in the successor state
s′ in the next time step t + 1. We define the immediate
reward

rt = r(at,ut) ± rLt
(7)

using two components. The first term r(at,ut) ∈
{rsh, rsl, rrh, rrl, rbh, rbl} corresponds to the reward por-
tion for taking an action a ∈ {1, 2, . . . , k, k+ 1} when a
request of specific u is received, and the second term

rLt
= cmax × hmax + 1− Lt, (8)

considers the reward portion for handling the new job
load Lt = ct × ht of a requested task. For instance,
serving low-load task such as L = 3 is awarded
more than serving a task with L = 18. Similarly,
rejecting a low-load task such as L = 3 should be
more penalized, i.e., negatively rewarded especially when
u ≥ uh, than rejecting a task with the same utility
and higher load such as L = 18. The two reward
parts are added when at = serve, and subtracted if
at = reject. We define six different reward-component
r(a,u) ∈ {rsh, rsl, rrh, rrl, rbh, rbl}, where rsh is the
reward for serving a high-utility request, rsl is the reward
for serving a low-utility request, rrh is the reward for
rejecting a high-utility request, rrl is the reward for
rejecting a low-utility request, rbh is the reward for
rejecting a high-utility request due to being busy, and
rbl is the reward for rejecting a low-utility request due
to being busy. Note that having a separate reward for
rejecting due to a busy state makes it easier for the

RL agent to differentiate between similar states for the
reject action. A request is determined as high-utility
or low-utility based on the threshold uh, which is a
design parameter that depends on the level of latency
requirement in an IoV and smart city environment.

V. OPTIMAL POLICIES AND DQN
The state value function V (s) represents the long-term value

of being in a state s. That is, starting from state s how much
value on average the EC will collect in the future, i.e., the
expected total discounted rewards from that state onward.
Similarly, the action-value function Q(s, a) tells how valuable
it is to take a particular action a from the state s. It represents
the expected total reward which the EC may get after taking
the particular action a from the state s onward. The state-
value and the action-value functions are given by the Bellman
expectation equations [52],

V (s) = E[Gt|s] = E[rt + γV (s′)|s], (9)
Q(s, a) = E[Gt|s, a] = E[rt + γQ(s′, a′)|s, a], (10)

where the state value V (s) and the action value Q(s, a) are
recursively presented in terms of the immediate reward rt
and the discounted value of the successor state V (s′) and the
successor state-action Q(s′, a′), respectively. a′ denotes the
action at the next state s′.

Starting at the initial state s0, the EC objective can be
achieved by maximizing the expected total return V (s0) =
E[G0|s0] over a particular time period T . To achieve this
goal, the EC should learn an optimal decision policy to take
proper actions. However, considering the large dimension of
sate space (see (6)) and the intractable number of state-action
combinations, it is infeasible for RL tabular methods to keep
track of all state-action pairs and continuously update the
corresponding V (s) and Q(s, a) for all combinations in order
to learn the optimal policy. Approximate DRL methods such
as DQN is a more efficient alternative for the high-dimensional
EC MDP to quickly learn an optimal decision policy to take
proper actions, which we discuss next.

A policy π is a way of selecting actions. It can be
viewed as a mapping from states to actions as it describes
the set of probabilities for all possible actions to select
from a given state, i.e., π = {P (a|s)}. A policy helps
in estimating the value functions in (9) and (10). π1 is
said to be better than another policy π2 if the state value
function following π1 is greater than that following π2 for
all states, i.e., π1 > π2 if Vπ1

(s) > Vπ2
(s),∀s ∈ S. A policy

π is said to be optimal if it maximizes the value of all
states, i.e., π∗ = arg max

π
Vπ(s),∀s ∈ S. Hence, to solve the

considered MDP problem, the DRL agent needs to find the
optimal policy through finding the optimal state-value function
V ∗(s) = max

π
Vπ(s), which is similar to finding the optimal

action-value function Q∗(s, a) = max
π

Qπ(s, a) for all state-
action pairs. From (9) and (10), we can write the Bellman
optimality equations for V ∗(s) and Q∗(s, a) as,

V ∗(s) = max
a∈A

Q∗(s, a) = max
a∈A

E[rt + γV ∗(s′)|s, a], (11)

Q∗(s, a) = E[rt + γ max
a′∈A

Q∗(s′, a′)|s, a]. (12)
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The expression of optimal state-value function V ∗(s) greatly
simplifies the search for optimal policy as it subdivides the
targeted optimal policy into local actions: take an optimal
action a∗ from state s which maximizes the expected imme-
diate reward followed by the optimal policy from successor
state s′. Hence, the optimal policy is simply taking the best
local actions from each state considering the expected rewards.
Dealing with Q∗(s, a) to choose optimal actions is even easier,
because with Q∗(s, a) there is no need for the EC to do the
one-step-ahead search and instead it picks the best action that
maximizes Q∗(s, a) at each state. The optimal action for each
state s is given by

a∗ = arg max
a∈A

Q∗(s, a) = arg max
a∈A

E[rt+γV
∗(s′)|s, a]. (13)

The optimal policy can be learned by solving the Bellman
optimality equations (11) and (12) for a∗. This can be done
for tractable number of states by estimating the optimal value
functions using tabular solution methods such as dynamic
programming, and model-free RL methods which include
Monte Carlo, SARSA, expected SARSA, and Q-Learning
(QL) [4]. However, for high-dimensional state space, such
as ours given in (6), tabular methods are not tractable in
terms of computational and storage complexity. Deep RL
(DRL) methods address the high-dimensionality problem by
approximating the value functions using deep neural networks
(DNN).

Deep Q-Network (DQN) is a powerful DRL method for
addressing RL problems with high-dimensional input states
and output actions [38]. DQN extends QL to high-dimensional
problems by using DNN to approximate the action-value
functions without keeping a Q-table to store and update the
Q-values for all possible state-action pairs as in QL. Fig. 3
demonstrates the DQN method for EC in the network slicing
problem, in which the DQN agent at EC learns about the IoV
and smart city environment by interaction. The DQN agent
is basically a DNN that consists of an input layer, hidden
layers, and an output layer. The number of neurons in the input
and output layers is equal to the state and action dimensions,
respectively, whereas the number of hidden layers and the
number of neurons in each hidden layer are design parameters
to be chosen. Feeding the current EC state s to the DNN as an
input and regularly updating its parameters, i.e., the weights of
all connections between neurons, DNN is able to predict the
Q-values at the output for a given input state. The DRL agent
at EC sometimes takes random actions to explore new rewards,
and at other times exploits its experience to maximize the
discounted cumulative rewards over time and keeps updating
the DNN weights. Once the DNN weights converge to the
optimal values, the agent learns the optimal policy for taking
actions in the observed environment.

For a received service request, if the requested resources are
affordable, i.e., ct ≤ (Ni − bit) for any fi ∈ {f̂i,Ni}, the EC
makes a decision whether to serve the request by the primary
FN or one of its neighbors, or reject and refer it to the cloud.
From (13), the optimal action at state s is given by,
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Fig. 3: The interaction of the DQN-based EC with the
IoV and smart city environment. Given the EC input state
s = (b1, l1, . . . , bk, lk, f̂, u, c, h), the DQN agent predicts the
action-value functions and follows a policy π to take an
action a which ends up in state s′, and collects a reward r
accordingly.

a∗ =

i ∈ Ã if Q∗(s, i) = max
a∈Ã

Q(s, a),

k + 1 otherwise,
(14)

where Ã denotes the set of possible serve actions to execute
the service task by fi ∈ {f̂i,Ni}. The procedure to learn the
optimal policy from the IoV and smart city environment using
the model-free DQN algorithm is given in Algorithm 1.

Algorithm 1 shows how the EC learns the optimal policy π∗

for the considered MDP. It requires the EC design parameters
k, N , Ni, and uh, and selecting the DNN hyper parameters γ,
the target update rate ρ, the probability ε of making a random
action for exploration, the replay memory capacity D to store
the observations (s, a, r, s′), the minibatch size n of samples
used to train the DNN model and update its weights w, and
the data of the IoV and smart city users u, c, h. Note that
u, c and h can be real data from the IoV and smart city
environment, as well as from simulations if the probability
distributions are known. The DNN target model at line 2 is
used to stabilize the DNN model and avoid divergence by
reducing the correlation between the action-values Q(s, a) and
the targets y = r + γmax

a′
Q(s′, a′) through only periodical

updates of the target model weights ŵ. In each iteration,
we take an action and observe the collected reward and the
successor state. Actions are taken according to a policy π
such as the ε-greedy policy in which a random action with
probability ε is taken to explore new rewards, and an optimal
action (see (14)) is taken with probability (1− ε) to maximize
the rewards. Model is trained using experience replay as shown
in lines 9-14. At line 9, a minibatch of n random observations
is sampled from M. The randomness in selecting samples
eliminates correlations in the observations to avoid model
overfitting. At line 11, we estimate the output vector Q̂ of
the target model for a given input state s in each experience
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Algorithm 1 Learning Optimum Policy Using DQN

1: Select: {γ, ε} ∈ [0, 1], ρ ∈ (0, 1], n ∈ {1, 2, . . . , D};
2: Create DNN model and target model with weights w and

ŵ, respectively;
3: Initialize: w, ŵ, the replay memory M with size D;
4: Initialize: s;
5: for t = 0, 1, 2, . . . , T do
6: Take action at according to π = ε-greedy, and observe

rt and st+1;
7: Append the observation (st, at, rt, st+1) to M;
8: s← st+1;
9: Sample a random minibatch of n observations from M;

10: for j = 1, 2, . . . , n do
11: Predict Q̂j(sj |ŵ);

12: yj =

{
rj if t+ 1 = T,

rj + γmax
a′

Q̂j(s
′, a′|ŵ) otherwise.

13: Fit the DNN model for (sj , yj) by applying gradient

descent step on
(

yj − Q̃j
)2

with respect to w;
14: end for
15: if (t mod τ) = 0 then
16: ŵ← ρw + (1− ρ)ŵ;
17: end if
18: if w converges then
19: w∗ ← w;
20: break
21: end if
22: end for
23: Use w∗ to estimate Q∗(s, a) required for π∗ using (14).

sample using the target model weights ŵ. Q̃ and Q̂ are the
predicted vectors of the k+1 Q-values for a given state s with
respect to w and ŵ, respectively. The way to compute the target
for sample j is shown at line 12. At line 13, we update the
model weights w by fitting the model for the input states and
the corresponding targets. A gradient decent step is applied

to minimize the squared loss
(
yj−Q̃j

)2
between the target

and the model predictions. The gradient descent converges to
the global minima of the quadratic loss function when the
DNN is over-parametrized, i.e., with large training data and
large number of hidden neurons [53]–[55]. The target model
weights are periodically updated every τ time steps as shown
at line 16, where the update rate ρ exemplifies how much we
believe in our experience. The algorithm stops when the DNN
model weights w converge. The converged values are then
used to determine optimal actions, i.e., π∗ as in (14).

VI. SIMULATIONS

We next provide simulation results to evaluate the perfor-
mance of the proposed network slicing approach in dynamic
IoV and smart city environments under different performance
evaluation criteria. We compare the DRL algorithm given
in Algorithm 1 with the serve-all-utilities (SAU) algorithm
in which the EC serves all coming tasks when requested
resources are available, serve-high-utilities (SHU) algorithm
where the EC filters high-utility requests and serve them if

TABLE II: Utility distributions corresponding to a variety of
latency requirements of IoV and smart city applications in
various environments

E1 E2 E3 E4 E5
P (u = 1) 0.015 0.012 0.008 0.004 0.001
P (u = 2) 0.073 0.058 0.038 0.019 0.004
P (u = 3) 0.365 0.288 0.192 0.096 0.019
P (u = 4) 0.292 0.230 0.154 0.077 0.015
P (u = 5) 0.205 0.162 0.108 0.054 0.011
P (u = 6) 0.014 0.071 0.142 0.214 0.271
P (u = 7) 0.013 0.064 0.129 0.193 0.244
P (u = 8) 0.011 0.057 0.114 0.171 0.217
P (u = 9) 0.009 0.043 0.086 0.129 0.163
P (u = 10) 0.003 0.015 0.029 0.043 0.055

P (u ≥ uh = 8) 2.3% 11.5% 22.9% 34.3% 43.5%
ū 3.82 4.589 5.55 6.5 7.27

TABLE III: Simulation Setup

Parameter Description Value
Ni resource capacity of FN fi 7
C set of possible resource blocks {1, 2, 3, 4}
H set of possible holding times 5×{1, 2, 3, 4, 5, 6}
ωg weight for GoS {0.7, 0.5, 0.3}
ωu weight for resource utilization {0.3, 0.5, 0.7}
uh threshold for a “high-utility” 8
D capacity of DNN replay memory 2000
γ reward discount factor 0.9
α learning rate 0.01
ε probability of random action 1.0 with 0.9995 decay
n batch size 32
τ ŵ update interval 1000
ρ ŵ update rate 0.2
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Fig. 4: The structure of the edge cluster considered in the
simulations. The neighboring lists N1,N2, . . . ,N7 include the
adjacent FNs only.

TABLE IV: Considered Rewarding Systems

Scenario ωg ωu R {rsh, rrh, rbh, rsl, rrl, rbl} rL
1 0.7 0.3 R1 {24,−12,−12, −3, 3, 12} (see (8))
2 0.5 0.5 R2 {24,−12,−12, 0, 0, 12} (see (8))
3 0.3 0.7 R3 {50,−50,−50, 50,−50,−25} 0

the available resources are enough, and the QL algorithm
independently running at each FN following a local version
of our MDP formulation [4]. The QL algorithm at each
FN corresponds to the non-cooperative scenario, hence this
comparison will help evaluate the importance of cooperation
among FNs. In the non-cooperative scenario, each FN operates
as a standalone entity with no neighbors to handover tasks
when busy, and no EC to manage the edge resources.
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Fig. 5: The performance and main network KPIs for DQN-
based EC while learning the optimum policy in the IoV and
smart city environment E3 under scenario 1 of Table IV.
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Fig. 6: The performance of the edge slice when the EC applies
the DRL Algorithm 1, SAU and SHU for the coordinated
FNs, and the uncoordinated QL based FNs case with NEC.
Considering scenario 1 in Table IV with ωg = 1− ωu = 0.7.

A. Simulation Environments

We evaluate the performances in various IoV and smart
city environments with different compositions of user utilities.
Specifically, we consider 10 utility classes that represent
different latency requirements to exemplify the variety of IoV
and smart city applications in an F-RAN setting. By changing
the distribution of utility classes we generate 5 IoV and smart
city environments as summarized in Table II. Higher density
of high-utility applications makes the IoV and smart city
environment richer in terms of URLLC applications. Denoting
an IoV and smart city environment of a particular utility
distribution with E , we show in Table II the statistics of E1, E2,
E3, E4, and E5. The probabilities in the first 10 rows in Table
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Fig. 7: The performance of the edge slice when the EC applies
the DRL Algorithm 1, SAU and SHU for the coordinated
FNs, and the uncoordinated QL based FNs case with NEC.
Considering scenario 2 in Table IV with ωg = 1− ωu = 0.5.
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Fig. 8: The performance of the edge slice when the EC applies
the DRL Algorithm 1, SAU and SHU for the coordinated
FNs, and the uncoordinated QL based FNs case with NEC.
Considering scenario 3 in Table IV with ωg = 1− ωu = 0.3.

II present detailed information about the proportion of each
utility class in the environment corresponding to the latency
requirement of diverse IoV and smart city applications. The
last two rows interpret the quality or richness of IoV and smart
city environments, where ū is the mean of utilities in an envi-
ronment, and P (u ≥ uh) is the percentage of high-utility pop-
ulation. We started with a general environment given by E3 for
the following IoV and smart city applications corresponding
to the utility values 1, 2, . . . , 10, respectively: smart lighting
and automation of public buildings, air quality management
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and noise monitoring, smart waste management and energy
consumption management, smart parking assistance, in-vehicle
audio and video infotainment, driver authentication service,
structural health monitoring, safe share rides, smart amber
alerting system and AI-driven and video-analytics tracking
services, driver distraction alerting system and autonomous
driving. Then, we changed the utility distribution to obtain
the other environments.

B. Simulation Parameters

The simulation parameters used in this section are summa-
rized in Table III. We consider an edge cluster of size k = 7,
where each FN has a computing and processing resource
capacity of seven resource blocks, i.e., N = 7. The central
FN f5 acts as the EC, and the neighboring relationships are
shown in Fig. 4. In a particular IoV and smart city environment
E , the threshold that defines “high utility” is set to uh = 8,
i.e., u ∈ {8, 9, 10} is a high-utility application with higher
priority for edge service. To make the resource allocation of
the network slicing problem more challenging, we consider
a request arrival rate of at least five times the task execution
rate, i.e., holding times increment by five times the arrival
interval. The probabilities of c ∈ C = {1, 2, 3, 4} are 0.1,
0.2, 0.3, and 0.4, respectively, whereas the probabilities of
h ∈ H = {5, 10, 15, 20, 25, 30} are 0.05, 0.1, 0.1, 0.15, 0.2,
and 0.4, respectively.

We consider a fully connected DNN structure for DQN
with an input layer of 18 neurons, 2 hidden layers of 64
and 24 neurons, respectively, and an 8-neuron output layer.
Linear activation function is used at the output layer and ReLU
activation is considered for the other layers. The Huber loss
function and the RMSprop optimizer are considered with 0.01
learning rate, 10−4 learning decay, and momentum of 0.9. The
ε-greedy policy is adopted in DNN training where ε starts
at 1.0 for 10% of the time in training and then decays at
a rate of 0.9995 to a minimum value of 10−3 to guarantee
enough exploration over time. As it depends on the nature of
the problem, there is no rule of thumb to tune DNNs. However,
the key factors and main DNN hypeparameters to optimize for
quick convergence include the loss function, the optimizer,
the interval τ to update target weights, the update rate ρ, the
exploration rate ε, the learning rate α, the discount factor γ,
the randomness of the samples and the batch size n, replay
memory size D, and a proper rewarding system to expedite
the learning. The values of all hyperparameters in this section
are chosen based on extensive experiments.

We examine the KPIs explained in Sec. IV-A, GoS, resource
utilization, cloud avoidance, as well as the overall performance
(see (4)-(3)) considering the three scenarios shown in Table
IV with the weights ωg = 1 − ωu = 0.7, ωg = ωu = 0.5,
and ωg = 1 − ωu = 0.3. Each scenario in Table IV
represents a new problem, hence the rewarding systems R1,
R2, and R3 are chosen to facilitate learning the optimal
policy in each scenario. The two reward components, r(a,u) ∈
{rsh, rrh, rbh, rsl, rrl, rbl} and rL for each rewarding system
are provided in Table IV. Note that unlike R2 and R3, R1

encourages rejecting low-utility requests with higher loads

to accommodate the performance requirement of scenario 1,
which puts higher weight on GoS with ωg = 0.7. On the other
hand, R3 promotes serving regardless of the request utility and
the task load as the performance in scenario 3 is in favor of
achieving higher resource utilization with ωu = 0.7.

C. Simulation Results

We train the DRL agent at the EC in various environments
and under different performance scenarios provided in Tables
II and IV, respectively. By interaction with the environment
as illustrated in Fig. 3, the EC learns the optimal policy
using the DQN method given in Algorithm 1. Considering
the environment E3 and the performance scenario 1, Fig. 5
shows an example for the learning curve of the proposed
DQN-based EC in terms of the overall performance and KPIs
which quickly converge to the optimal scores. Starting with
exploration through taking random actions for 30k time steps,
the EC initially performs improperly and provides a relatively
low GoS (i.e., many high-utility requests are missed) while
utilizing the resources mainly for low-utility requests. How-
ever, as the algorithm learns the optimum actions from reward
feedback, the exploration rate decays and the performance
starts to improve. As a result, the EC quickly aligns with the
objectives of scenario 1 putting more emphasis on GoS by
prioritizing high-utility users for edge service.

Next, we compare DQN-EC given in Algorithm 1 with
SAU-EC, SHU-EC, and QL with no EC (QL-NEC) under the
three scenarios given in Table IV. Figs. 6-8 show that the
DRL-based EC adapts to each scenario and outperforms the
other algorithms in all IoV and smart city environments. For
scenario 1 in Fig. 6, SHU-EC has a comparable performance
to DQN-EC because SHU algorithm promotes serving high-
utility requests all the time, which matches with the focus on
GoS in scenario 1 design objective with ωg = 0.7. However,
in poor IoV and smart city environments with less high-
utility population such as E1 the performance gap increases.
This gap shrinks as environment becomes richer and SHU-EC
achieves a performance as high as the DQN-EC score in E4
and E5. The performance of SAU-EC slightly increases while
moving from E1 to E3 and becomes stable afterwards even
for the richer environments E4 and E5 since SAU-EC does
not prioritize high-utility tasks. Unlike the other algorithms,
QL-NEC shows a declining trend since the network slicing
problem becomes more challenging with uncoordinated FNs
while moving towards richer environments in this scenario.
Fig. 7 represents scenario 2 with equal weights for GoS and
resource utilization, where SAU-EC is the second performing
algorithm following DQN-EC. With less importance for GoS,
the performance of SHU-EC is as low as the QL-NEC in E1
and although it grows while moving to richer environments,
it does not reach a comparable level until E4 and E5. The
uncoordinated FNs with QL-NEC is more steady in scenario
2. Fig. 8 shows the performances in scenario 3 in which
more emphasis is put on resource utilization than GoS with
ωu = 0.7. It is observed that SHU-EC fails to achieve a
comparable level of performance compared to DQN-EC while
SAU-EC does.
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(a) DQN-EC, ωg = 0.7 and ωu = 0.3.
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(b) DQN-EC, ωg = ωu = 0.5.
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(c) DQN-EC, ωg = 0.3 and ωu = 0.7.
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(d) SAU-EC, all scenarios.
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(e) SHU-EC, all scenarios.
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(f) QL-NEC, ωg = 0.7 and ωu = 0.3.
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(g) QL-NEC, ωg = ωu = 0.5.
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(h) QL-NEC, ωg = 0.3 and ωu = 0.7.

Fig. 9: The score of the main three individual KPIs, GoS, resource utilization, and cloud avoidance when the EC applies
Algorithm 1, SAU and SHU for coordinated FNs, and the uncoordinated QL at FNs with no EC, under the 3 scenarios in
Table IV.

Fig. 9 provides the detailed KPI scores for GoS, resource
utilization and cloud avoidance for all algorithms considering
the three design scenarios in all environments. DQN-EC
always adapts to the design objective and the IoV and smart
city environment. It maximizes GoS in scenario 1 as shown
in Fig. 9a, balances GoS and utilization for scenario 2 as
observed in Fig. 9b, and promotes resource utilization for
scenario 3 as shown in Fig. 9c. QL-NEC in Figs. 9f-9h tries to
behave similarly as it learns by interaction, but unfortunately
the uncoordinated FNs in the edge slice cannot achieve that.
Note that, DQN-EC learns the right balance between GoS
and resource utilization in each scenario. For instance, even
though SHU-EC is the second performing in Fig. 6 following
DQN-EC, it has lower utilization and cloud avoidance scores,
i.e., less edge-slice contribution to handle service requests as

shown in Fig. 9e. Similarly, SAU-EC is well-performing in
scenario 2 compared to DQN-EC as shown in Fig. 7, however,
it does not learn to balance GoS and utilization as DQN-EC
does in Fig. 9b.

Finally, we test the performance of the proposed DQN
algorithm in a dynamic IoV and smart city environment. In
Fig. 10, we consider the design objectives of scenario 1 in
Table IV and a sampling rate of 5 × 10−4. To generate a
dynamic IoT environment we start with 40 samples for the
initial environment and then change E every 30 samples. More
samples is considered for the initial E since we start with
vacant resource blocks for all FNs in the edge slice. We
consider a dynamic IoV and smart city environment whose
composition of high-utility requests, i.e., low-latency tasks,
changes over a day. Starting in the morning busy hours with
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Fig. 10: The performance of the proposed DQN and the
straightforward SHU policy for network slicing in a dynamic
IoV and smart city environment considering the design objec-
tive of scenario 1 in Table IV. Although SHU performs well in
rich environments, it cannot adapt to the other environments as
expected. The proposed DQN policy on the other hand learns
to adapt to different environments.

E4, the density of high-utility requests drops over time to
E1 during the late morning hours. It starts growing to reach
E2 by noon and E3 in the evening, and then peaks again
during the night busy hours with E5. These 5 environments
represent different distributions over diverse levels of utilities,
i.e., different latency requirements of the various IoV and
smart city applications. Hence, they can be thought as different
traffic profiles during the day in terms of the required QoS. The
changes during the day directly affect the overall distribution
of the environment over time and makes it dynamic. In the
proposed algorithm, once the EC detects the traffic profile, i.e.,
the environment, it applies the corresponding optimal policy
π∗4 given in (14) to maximize the expected rewards in E4. Right
after the density of low-latency tasks drops over time to E1,
i.e., at t = 80K, the EC keeps following π∗4 until it detects
the change from the statistics of task utilities, which results in
a slight degradation in its performance since π∗4 is no longer
optimal for the new environment E1. However, after a short
learning period, the EC adapts to the dynamics, and switches
to the new optimal policy π∗1 . Similarly, as seen for the other
transitions from E1 to E2, E2 to E3, and E3 to E5, DQN-
EC successfully adapts to the changing IoV and smart city
environments. Whereas, the straightforward SHU-EC policy
performs well in only the rich environments for which it was
designed, and cannot adapt to the changes in the environment
as expected.

VII. CONCLUSION

We developed an infinite-horizon Markov decision process
(MDP) formulation for the network slicing problem in a
realistic fog-RAN with cooperative fog nodes; and proposed
a deep reinforcement learning (DRL) solution for the edge
controllers (ECs), which are the fog nodes that serve as cluster

heads, to learn the optimal policy of allocating the limited edge
computing and processing resources to vehicular and smart
city applications with heterogeneous latency needs and various
task loads. The deep Q-Network (DQN) based EC quickly
learns the dynamics through interaction with the environment
and adapts to it. DQN-EC dominates the straightforward and
non-cooperative RL approaches as it always learns the right
balance between GoS and resource utilization under differ-
ent performance objectives and environments. In a dynamic
environment with changing distributions, DQN-EC adapts to
the dynamics and updates its optimal policy to maximize the
performance.
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