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Abstract—The fluctuating nature of wind energy has inspired
researchers to look for a fast, efficient Maximum Power Point
Tracking (MPPT) algorithm. The MPPT method aims to har-
ness maximum power at varying wind speeds by adjusting rotor
speed. Our contribution to the wind MPPT task is twofold.
First, we use a predictive model to map the current operating
point of the turbine speed and output power to the optimal
operating point (i.e., optimal turbine speed for maximum output
power). Second, we propose a Deep Reinforcement Learning
based solution that provides adaptive speed control to reach the
MPP fast and precisely. Our experimental results demonstrate
the superior performance of our method compared with the
existing techniques.

Index Terms—Deep reinforcement learning, markov decision
process, MPPT, renewable energy, wind power.

I. INTRODUCTION

A. Wind Energy

The increasing cost and adverse effects of fossil fuels on
climate have increased the demand for an efficient renewable
energy alternative. Wind energy can be a great source of clean
and reliable energy, and there has been a rapid penetration of
wind generators in modern power systems in the last decade.
The global wind power generation capacity is expected to
reach 840 GW by the end of 2022 [1]. The basic nature of
wind energy is extremely fluctuating, and thus tracking of
maximum power point (MPP) to extract maximum capture
of energy at different varying wind speeds is of great interest.

B. Wind MPPT

Maximum power point tracking (MPPT) algorithms help
to extract maximum power from wind energy conversion
systems (WECS). The speed and direction of the wind change
continuously and thus output from a WECS fluctuates. As per
the Betz limit only 59% of total available wind energy can be
harnessed by the wind turbine. The WECS system operating
region is from the cut in wind speed Vcutin to rated wind
velocity Vrated. MPPT algorithms take into account variables
like voltage, optimal power, and duty cycle to ensure maxi-
mum power generation for corresponding wind velocity in the
operating region. The MPPT tracking algorithms for WECS
can be broadly categorized into four types, direct power
control (DPC), Indirect Power control (IPC), smart or AI-
based, and hybrid algorithms that utilize both conventional

Fig. 1. Classification of MPPT algorithms for wind power.

and smart methods [2]. Fig. 1 summarizes the classification
of different MPPT methods for wind energy.

C. Wind MPPT Existing methods

The most popular IPC-based conventional MPPT algo-
rithm is tip speed ratio (TSR). In this method, the reference
rotor speed is generated by estimating the rotor and wind
speed. Using this reference speed and other system parame-
ters, power extraction is optimized. The TSR algorithm can
either utilize mechanical sensors employed in anemometers
in the wind turbine swept area or estimate the wind speed
through mathematical modeling [3], [4]. TSR is simple to
implement and shows rapid response in regulating the rotor
speed under changing environments. The drawbacks are
increased installation and maintenance costs, lower efficiency,
and lack of reliability. The optimum torque (OT) method uses
an optimal torque curve for multiple wind speeds to regulate
the generator torque. Although the technique is simple and
yields higher efficiency under ideal conditions, it is greatly
dependent on the climate and wind turbine characteristics
[5]. Any mismatch between the assumed optimal torque curve
based on the prior knowledge and the actual climate and wind
turbine characteristics may cause significant performance
drops. The power signal feedback (PSF) method uses a
lookup table for optimal power for a wind turbine that
is generated by an experimental setup or simulation. This978-1-6654-9921-7/22/$31.00 ©2022 IEEE



method shows good performance in tracking MPP at low
wind speeds, but requires prior knowledge of system and
wind speed sensors [6]. Similar to the other IPC methods,
PSF is based on a static prior knowledge base, which may
suffer from the potential mismatch between the assumed and
actual characteristics of climate and turbine.

As opposed to the model-based IPC methods, DPC meth-
ods follow a data-driven approach, e.g., Perturb and observe
(P&O) and Incremental conductance (INC) methods [1], [6].
In P&O, the control variables are adjusted and their effect
on the performance is observed to decide on the next steps.
The advantage of this algorithm is that it does not require
additional measurement sensors and prior knowledge of the
wind turbine parameters. However, choosing the appropriate
direction and step size for perturbation is a challenging task,
and thus the conventional P&O algorithm may be slow in
convergence, and oscillate near MPP but fail to achieve it.
The INC method observes the rectifier output power to decide
the direction of perturbation. This data-driven method also
suffers from slow convergence and oscillation around MPP,
like P&O.

With advances in AI methods, several machine learning
(ML) MPPT algorithms have been proposed recently. Re-
searchers in [7], [8] presented radial basis function (RBF)
neural network and Wilcoxon RBF neural (WRBFN) network
for wind MPPT. Authors in [9] presented an artificial neural
network (ANN) based MPPT algorithm by using the electric
power and rotor speed of the generator as the input and
the action values of the WECS as the output. While those
ML methods improved the accuracy of previous model-based
MPPT methods in terms of mapping the operating point to
MPP based on the prior knowledge, they still cannot deal
with the model mismatch in an effective way.

Several hybrid methods have also been proposed by re-
searchers such as ANN and PSF [10]; ORB and particle
swarm optimization [11]; TSR, PSF, and hill climb search
(HCS) control [12]. Authors in [13] presented fuzzy logic
and ANN based Adaptive Neural-Fuzzy Interface System
(ANFIS) technique for MPPT. The hybrid methods aim
to combine the advantages of several methods to improve
performance, but are typically complex in terms of time and
computational complexity.

D. RL for energy optimization & MPPT

Reinforcement learning (RL) is an AI technique which
has been extensively used for data-driven optimization in
various applications such as robotics, Internet of Things (IoT)
[14], and power systems [15]. Recently, RL for MPPT in
solar energy has also been studied [16]. There are also some
RL works for wind MPPT. In [17], [18], authors presented
similar Q-learning based MPPT techniques where the RL
agent learns the MPP by interacting with the environment
using the model-free Q-learning algorithm. One advantage
of RL is that it does not require prior knowledge of the
wind turbine characteristics or deployment of wind speed
measurement sensors. The data-driven nature of RL enables
adapting to the practical operating conditions, as opposed to

completely relying on models built using prior knowledge.
Compared to the traditional DPC methods, such as P&O, RL
methods can converge to the MPP faster and more accurately
since they take consider expected future impacts of actions
(i.e., perturbations).

However, the existing Q-learning based wind MPPT meth-
ods [17], [18] lack two important aspects. The model-free Q-
learning algorithm completely ignores easily accessible prior
knowledge on the wind turbine, such as optimal power curves
under different wind speeds that can be obtained from the
manufacturer. A fully data-driven approach which does not
use any prior knowledge may suffer slower convergence and
loss of energy as a result, as we empirically demonstrate
in Section IV. Moreover, due to the discrete nature of Q-
learning, [17], [18] use look-up tables to store the expected
values of state-action pairs (i.e., Q values) for decision
making, which is limited to low-dimensional, low-resolution,
discrete state-action spaces. Critical system state variables,
such as rotor speed and output power, and action variables,
such as change in rotor speed, are inherently continuous-
valued. Hence, discretizing them into a low-resolution space
inevitably causes performance loss. On the other hand, trying
to store huge high-resolution look-up tables requires large
memory spaces and intractable training time and data.

To address these shortcomings of Q-learning based wind
MPPT methods, in this work we propose a deep RL solution
which uses both prior knowledge for faster convergence and
observed data for adapting to the operating environment. The
main contributions of this work are:

• A novel deep RL method to control the turbine rotor
speed under variable wind velocity;

• A machine learning-based optimal power curve predic-
tor to utilize prior knowledge in the proposed deep RL
method;

• Performance evaluation of the deep RL method with
existing techniques.

The remainder of the paper is organized as follows: sec-
tion II gives the necessary background. The proposed tech-
nique is explained in Section III, and the experimental results
are presented in Section IV. Finally, concluding discussions
and remarks are given in Section V.

II. PROBLEM STATEMENT

The electrical power generated by a wind turbine,

P = ηGηCPm, (1)

depends on the generator efficiency ηG, converter efficiency
ηC , and the mechanical power Pm captured by the turbine
from wind. The mechanical power captured by a wind turbine
is given by,

Pm =
1

2
ρv3ACp,

where ρ, v3, A = πR2, R, Cp are respectively the air
density, air velocity, area swept by the turbine blades, blade
radius, and turbine power coefficient. Cp is a function of the
turbine speed ratio λ = ωR

v , where ω denotes the rotor speed,
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Fig. 2. Turbine power versus turbine speed for different wind
speeds.

and the blade pitch angle β. As the air density is mostly
constant, for a particular turbine, Eq. (1) can be rewritten as

P =
1

2
ηGηCρA︸ ︷︷ ︸
constant

× v3Cp︸ ︷︷ ︸
f(v,ω)

. (2)

Eq. (2) indicates that the electrical power output for a
given turbine varies according to the wind velocity v and
the rotor speed ω, as shown in Fig. 2. The solid curved lines
in Fig. 2 represent the output power for different turbine rotor
speed and wind velocity. Higher wind speed results in more
electrical power, as evident by the increasing power curves
for higher wind velocity (i.e., vw1 < vw2 < ... < vw7). The
concave power curves show that for a fixed wind velocity
there is a unique optimal rotor speed ω∗ that yields maximum
output power Pmax. Connecting these points, we get the
optimal power curve shown by the dashed magenta line.

As a test case, let us assume the turbine is operating at ωm7

rotor speed and produces power PA. Under ideal conditions,
with the knowledge of power curves for different wind
speeds, the MPPT problem can be easily solved by changing
the rotor speed ωm5 to obtain the maximum output power PC .
However, due to practical limitations, sophisticated MPPT
solutions are needed in practice. Firstly, wind speed needs to
be accurately measured using a sensor to exactly determine
the optimal rotor speed ωm5. Due to the critical dependence
of the MPPT performance on the accuracy of wind sensors
in this scenario and the cost of regular maintenance of wind
sensors for accurate measurements, alternative approaches
which do not require wind speed knowledge are studied. To
this end, we train a predictive model to map the operating
point PA to the optimal rotor speed ωm5 without requiring
the wind speed.

Moreover, without exactly knowing the optimal rotor
speed, an MPPT method requires a step size ∆ω = ωm2 −
ωm1 to change the rotor speed while searching for the optimal
rotor speed. While a big step size ensures fast tracking, it
may also cause convergence issues. On the other hand, a
small step size provides a smoother convergence to the MPP
at the cost of slower tracking. For instance, in Fig. 2, starting
with the operating point PA, a search-based MPPT algorithm
(e.g., Hill Climb Search (HCS) method [1]) with a step size
of ∆ω would first decrease the rotor speed from ωm7 to ωm6

Generator
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Model 
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State 
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Fig. 3. Proposed wind MPPT model. RL components are
marked in red.

and then to ωm5. Consider the wind speed dropping to vm5

afterwards, hence causing the operating point to move from
PC to PD at the same rotor speed ωm5. In that case, the step
size ∆ω in Fig. 2 would cause the rotor speed to oscillate
between ωm4 and ωm5, whereas a smaller step size could
prevent or decrease the oscillation.

Also with aging, the turbine capacity and performance
decline, and the optimal power curve shifts downward. This
non-stationary optimal power curve makes RL a suitable
optimization technique for the wind MPPT problem.

III. MODEL DEVELOPEMENT

Our method consists of a predictive model and an RL agent
which controls the rotor speed of the turbine. The proposed
control agent utilizes the advantage actor-critic (A2C) deep
RL framework, which is suitable for fine-grained state-action
spaces [19]. Fig. 3 shows that at time step t, the speed
controller controls the turbine rotation speed ωt. The turbine
is connected to a generator that converts the mechanical
power into electrical power, which serves the load. The
generated power Pt is measured by a wattmeter. Then Pt and
ωt are fed into the predictor that maps the operating point
to the optimal rotor speed ω̂t, as explained in Section III-A.
The current rotor speed and predicted optimal speed define
the system state for the RL agent. The RL agent takes the
action of rotor speed change ∆ωt to control the turbine speed.
The generated power Pt and the predicted optimal power P̂t

define the reward to train the RL framework.

A. Predictive Model

Fig. 2 illustrates that the power curves for different wind
speeds are non-overlapping. For a particular power curve,
there is a rotor speed that achieves the maximum power
and the resulting optimal operating points form the optimal
power curve. That means a predictive model can be trained
on data obtained from the manufacturer to output the optimal
rotor speed that would maximize the generated power. The
input data to the predictive model consists of current rotor
speed ωt and generated power Pt, and the output of the
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Fig. 4. Average accuracy for different regressor models for
predicting maximum power and optimal rotor speed for
different wind velocities.

predictive model is the predictions for optimal rotor speed
ω̂t and maximum power P̂t.

We experimented with several regression models (Ridge,
Decision Tree, and Huber) using the Python Scikit-learn
package and selected Decision Tree regressor for the sim-
ulations. Although, all the regressors attain more than 90%
accuracy, Decision Tree achieves the best accuracy for both
maximum power and optimal turbine speed, as shown in Fig.
4.

B. MDP Model

In this paper, we design a Markov Decision Process (MDP)
model to formulate the problem for the RL agent. The MDP
model is based on the Markov property; i.e., given the current
state and action the future state does not depend on the past
states and actions. We next explain the elements of our MDP
model for the MPPT controller, shown with red in Fig. 3.

1) State, St: The agent collects the rotor speed ωt from
the speed controller and predicted optimal speed ω̂t from the
predictive model to form the MDP state as:

St = (ωt, ω̂t).

Both of the state variables are positive real numbers, which
can be effectively handled by deep RL methods like A2C
without discretization, as opposed to the tabular RL methods
such as Q-learning.

2) Action, At: The RL agent’s action At is to select the
change of turbine rotation speed ∆ωt. So, ∆ωt = 0 indicates
no change in speed. Positive and negative ∆ωt values rep-
resent increase and decrease of turbine speed, respectively.
Theoretically, continuous-valued speed changes can give the
highest flexibility and performance optimization; however,
the turbine speed controller can only accommodate a limited
number of discrete values. We consider a fine-grained action
space At = ∆ωt ∈ {−0.05,−0.04, ..., 0.04, 0.05}, where
the numbers indicate the percentile change of the nominal/-
nameplate turbine speed (provided by the manufacturer). As
a result, the RL agent has 11 possible actions.

Table I: GE Energy 1.5MW Wind Turbine Technical Speci-
fications (GE 1.5 S).

Parameter Definition Value

Pmax Rated capacity 1500 kW
vrated Rated wind speed 12 m/s
vmin Cut-in wind speed 4 m/s

Number of rotor blades 3
D = 2R Rotor diameter 70.5 m

A Swept area 3.904 m2

ω Rotor speed (range) 11.1 – 22.2 rpm

The turbine speed change, ∆ωt, is executed by the Tur-
bine Speed Controller (TSC). This TSC includes necessary
mechanical and electrical devices to achieve the target speed
ωt = ωt−1 +∆ωt.

3) Reward, Rt: In RL, the reward function guides the
agent towards optimal action. The reward is observed from
the environment but requires modeling to provide meaningful
insight to the RL agent. We use the difference between the
predicted and generated power as reward,

Rt = Pt − P̂t. (3)

The agent aims to maximize the reward, i.e., maximize output
power Pt. The selected reward in Eq. (3) provides the RL
agent with a stable target to reach. The highest reward the
agent can achieve is zero, i.e., generated power being equal to
the predicted maximum power. Since changing turbine speed
will incur a negative reward once the MPP is reached, the
agent selects At = 0 (∆ωt = 0) in that case.

4) Next State, St+1: Given the agent’s action and pre-
dicted optimal turbine speed, the next state is given by

St+1 = (ωt +∆ωt, ω̂t+1).

If the wind velocity remains the same, this transition is
deterministic. Changing wind speed incurs randomness in the
state due to the changing ω̂t+1.

C. Solution Approach

The RL agent’s objective is to maximize the expected
discounted total reward for a time horizon T ,

E

[
T∑

t=0

γtRt

]
, (4)

where γ ∈ (0, 1) is the discount factor for future rewards.
Two of the most popular approaches for finding the optimal
policy {At} are value-based methods (i.e., deep Q-learning)
and policy-based methods (i.e., policy gradient). We con-
sider the Advantage Actor-Critic (A2C) algorithm for this
continuous-state MDP [19]. A2C is a hybrid deep RL method
consisting of a policy-based actor network and value-based
critic network. A pseudo code for the A2C algorithm is given
in Algorithm 1.

IV. EXPERIMENTS

A. Setup

The GE Energy 1.5MW Wind Turbine (GE 1.5 S) is a
popular model, that we have used in our experiments. Its
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Algorithm 1 A2C algorithm for wind MPPT.

Input: discount factor γ, learning rate, and number of
episodes e
Input: Wind velocity {vt}, and turbine speed {ωt}
Initialize: Actor network with random weights and critic
network with random weights
for episode = 1, 2, ..., e do

for t = 1, 2, ..., T do
Observe ωt and Pt

Predict ω̂t, and P̂t

Select action At for state St = (ωt, ω̂t) (Actor
network)
Calculate reward Rt = Pt − P̂t

Store transitions (St, At, Rt, St+1).
Compute the advantage function (Critic network)
Update actor network via advantage function.
Update critic network through back propagation.

end for
end for

Table II: Computational statistics for the experiments.
Hardware Software Task Computation time

Intel® Core i7 Python 3.8.5 ANN Predictor Train 6 sec
3.60GHz Pytorch 1.8.1 DRL Convergence 80 min

16 GB RAM sklearn 0.23.2 DRL Decision 2.4 sec

technical specifications are given in Table I. The turbine’s
generation depends on the wind velocity and its rated wind
speed is 12 m/s. However, for safety purposes the turbine is
operational only between 4−25 m/s. In our experiment, we
generate a test signal where wind velocity ranges between 6−
11 m/s as shown by the dashed line and right y-axis in Fig.
5. We use air density 0.0013 kg/m3 and other parameters
from Table I.

In the A2C architecture, the actor and critic networks have
similar structures with 2 input neurons, followed by 16, 64,
and 16 neurons for both of them. However, the actor network
has 11 output neurons (number of actions) compared to the 1
output neuron of the critic network. The Adam optimizer and
a blend of linear and ReLU activation functions worked well
for us. We set the learning rate to 0.001 and the discount
factor to 0.95. We show the computation metrics in Table
II for our proposed model. The A2C algorithm converges
in 2000 episodes and takes 80 min computation time (each
episode takes 2.4 sec). Each decision requires 0.024 sec,
which provides a real-time applicability for our method.

B. Benchmark Policies

We compare our method with two policies.
1) Hill Climb Search (HCS) [1]: We use the popular Hill

Climb Search method [1] as our baseline policy. We set the
step size as 0.02 for hill climbing through a grid search.

2) Q-Learning Method [17]: Wei et al. [17] proposed an
RL method for wind MPPT. They use the tabular Q-learning
algorithm, and hence their state space is dicretized. The state
space consists of the rotor speed and output power for the
wind turbine, and the action space is the change of rotor
speed (similar to our approach). However, they model the
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Fig. 5. Output power for different methods for varying wind
speed.
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100 sec experimental timeline.

reward function with +1, 0, and -1 for positive, zero, and
negative incremental change in power generation.

C. Results

For the experiments, we have generated a 100 sec se-
quence. Ideal Case in Figs. 5 and 6 indicates the situation
where the wind turbine always operates on the optimal
power curve (MPP), hence providing the ideal benchmark
to evaluate the other methods. Our deep RL method is the
fastest to reach the MPP. The Q-learning method suffers from
its discretized state space. However, it does better than the
HCS method by considering expected future rewards in its
actions. For the HCS method, deciding on the step size is
critical. We followed the suitable step size from our grid
search; however, a dynamic step size might perform better.
The proposed deep RL method performs significantly better
than the other methods, especially while adapting to a big
change in the environment, as evident in the sudden drop of
wind speed at 80th sec (from 10 m/s to 7 m/s).

As a consequence of slow MPPT, the other methods yield
a lower amount of wind energy, as seen in Fig. 6. The energy
generation for different methods is consistent with the MPPT
performance explained previously. Table III shows the yield
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Table III: Comparison of energy generation for different
methods.

After Energy Generation (MJ) Reduction

Ideal Case 85.39 0 %
HCS Method [1] 72.31 15.32 %

Q-Learning Method [17] 78.48 8.09 %
Proposed DRL Method 81.19 4.92 %

of energy in the 100 sec timeline for different methods. The
deep RL method lags the ideal case by 4.92 %; compared to
8.09 % and 15.32 % for the Q-learning and HCS methods.

V. CONCLUSION

This research provides a state-of-the-art deep RL solution
(based on the actor-critic paradigm) to the MPPT task for
wind energy. The proposed method utilizes a predictor for
mapping the operating point to the maximum power point
in the turbine speed vs. output power graph. Using the prior
knowledge (power curves under different wind speeds) on
the wind turbine, the predictor helps the deep RL agent to
form an informative state space and a stable target to train
its actor and critic networks. Integrating the prior knowledge
into a state-of-the-art deep RL approach which can work with
continuous-valued state variables and a fine-grained action
space, the proposed method significantly outperforms the
popular benchmarks, Hill Climb Search (HCS) [1] and Q-
learning based MPPT method [17], in terms of generated
power and total energy under varying wind speeds.
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