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Abstract: This paper considers the real-time detection of abrupt and persistent anomalies in high-
dimensional data streams. The goal is to detect anomalies quickly and accurately so that the appro-
priate countermeasures could be taken in time before the system possibly gets harmed. We propose a
sequential and multivariate anomaly detection method that scales well to high-dimensional datasets.
The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e.,
trains only on nominal data. Thus, it is applicable to a wide range of applications and data types.
Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such
as changes in the correlation structure. Its asymptotic optimality and computational complexity are
comprehensively analyzed. In conjunction with the detection method, an effective technique for
localizing the anomalous data dimensions is also proposed. The practical use of proposed algorithms
are demonstrated using synthetic and real data, and in variety of applications including seizure
detection, DDoS attack detection, and video surveillance.

Keywords: anomaly detection; change detection; anomaly localization; nonparametric methods;
sequential analysis

1. Introduction

Anomaly detection is an important problem dealing with the detection of abnormal
data patterns [1]. It has applications in a variety of different domains, such as automatic
video surveillance [2], cybersecurity [3], medical health care [4], and quality control. The
importance of anomaly detection lies in the fact that an anomaly in the observation data
may be a sign of an unwanted event such as failure and malicious activity. in the un-
derlying system. Therefore, accurate detection of such data patterns will allow proper
countermeasures to be taken by the domain specialist to counteract any possible harm. The
advances in various technologies such as Internet-of-Things (IoT) devices and sensors, and
wireless communications, have enabled the real-time monitoring of systems for detecting
events of interest. In many modern and complex systems, such as IoT networks, network-
wide traffic monitoring systems, environmental monitoring systems, massive amounts of
heterogeneous data are generated, which require real-time processing for timely detection
of anomalous events. As an example, automated vehicles or advanced driver-assistance
systems today are equipped with modules comprising a large number of sensors and
actuators for control and safety purposes. Due to the catastrophic consequences of any
fault in perceiving the environment or failure in a component of the system, as well as
being compromised by hackers, it is crucial to preserve the robustness of the vehicle. To
this end, the high-dimensional measurements from sensors need to be monitored and
analyzed in real-time to detect anomalies such as sudden increase of speed, abnormal
petrol consumption, anomalies in radar sensors and camera sensing [5]. Accurate and
light-weight anomaly detection methods that can scale well to large systems are needed to
be able to address such big data challenges in real-time.

Anomaly detection methods on univariate data streams have been studied thoroughly
in the literature. However, little work has been done on multivariate anomaly detection,
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which has the potential to achieve quicker and more accurate detection than univariate
anomaly detection by capturing more anomaly evidence in the interactions between system
dimensions. Statistical approaches to anomaly detection assume anomaly to be a change in
the probability distribution of the observations, such as a change in the mean, variance, or
correlation structure between the data-streams. One important application for detecting
changes in the correlation structures is finance, where the correlation structures between
high-dimensional processes modeling the exchange rates and market indexes are important
for the right choice of asset allocation in portfolio [6]. Furthermore, in social networks, it is
important to detect abrupt changes in interactions between the nodes; and in communica-
tion networks, it is of interest to detect highly correlated traffic in a network [7]. Distributed
Denial of Service (DDoS) attacks to power grid through synchronous switching on/off
of high-wattage IoT devices is another example where anomaly is manifested in correla-
tions [8]. Detection of change in correlation structure requires the joint monitoring and
multivariate analysis of the data-streams, which in turn, leads to the high-dimensionality
challenge. To overcome this challenge, a desired anomaly detection technique needs to be
scalable to high-dimensional data in real-time.

Anomaly detection in many systems such as fraud detection could be the ultimate goal,
however, in many scenarios, such as diagnosis systems (e.g., spacecraft monitoring sys-
tem [9]) and cybersecurity, it is highly important to provide a degree of interpretation about
the detected issue in the system and how to mitigate it. Considering the potential damages
caused by failure in mitigation of unexpected behaviors, such as cyber-attacks, detecting
anomalies without providing any further information explaining where the anomaly has
happened is of limited value to the engineers. Motivated by the aforementioned challenges,
we investigate an online multivariate anomaly detection and localization technique which is
simple enough to handle high-dimensional and heterogeneous data in real-time.

Contributions: In this paper, aiming at the timely and accurate detection of anoma-
lies in high-dimensional systems we propose a kNN-based sequential anomaly detection
method. In summary, our contributions in this paper are as follows:

• A framework for multivariate, data-driven and sequential detection and localization
of anomalies in high-dimensional systems is proposed for a semi-supervised setting
where only a training data of nominal observations are available.

• Asymptotic optimality of the proposed detection method in the minimax sense is
shown, and comprehensive analysis for computational complexity is provided.

• The practicality of the proposed anomaly detection and localization is demonstrated on
variety of applications such as detection of IoT botnets, seizure onsets, and anomalous
behavior in video surveillance, using synthetic and real data.

The rest of the paper is organized as follows. In Section 3, the mathematical formu-
lation of the anomaly detection problem and the relevant background information are
provided. The proposed anomaly detection is presented in Section 4. Specifically, the
asymptotic optimality and computational complexity of the proposed detector are ana-
lyzed. Moreover, a fast and approximate variant is presented and evaluated. The proposed
anomaly localization technique is provided in Section 5. In Section 6, we evaluate the
proposed detector and localization techniques using synthetic and real data, such as seizure
onset detection in brain, IoT botnet detection, and detection of anomalous behavior in
video surveillance. Finally, we conclude the paper in Section 7.

2. Related Work

The problem of anomaly detection has been an important subject of study in several
research communities, such as statistics, signal processing, machine learning, informa-
tion theory, and data mining, either specifically for an application domain or as a generic
method. To name a few, an SVM classification approach for anomaly detection was pro-
posed in [10]; Bayesian methods were developed for social networks [11], partially observed
traffic networks [12], and streaming environmental data [13]; deep neural network models
were proposed for detecting anomalies multivariate time series [14–18]; several information
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theoretic measures were proposed in [19] for the intrusion detection problem; and two
new information metrics for DDoS attack detection was introduced in [3]. Due to the
challenging nature of the problem and considering the challenges posed by today’s techno-
logical advances such as big data problems, there is still a need for studying the anomaly
detection problem.

Sequential anomaly detection techniques, compared to the outlier detection tech-
niques [1], take also the history of observations into account rather than only the new ob-
servations. Sequential techniques are more suitable for real-time systems where timely and
accurate detection of anomalies is important. The Cumulative Sum (CUSUM) detector [20]
is a well-known sequential change detection technique that assumes probabilistic models
for nominal and anomalous data points, and computes the cumulative log-likelihood-ratio
(LLR) over time, declaring anomaly if the statistic exceeds a predefined threshold. The
accuracy of assumed probabilistic models as well as the estimated parameters are the key
factors in the performance of CUSUM and in general parametric methods. CUSUM is
minimax optimum under the condition that the probability distributions before and after
the change are completely known [21]. However, in many real-world applications having a
complete a priori knowledge about the underlying distributions is not possible. Estimat-
ing the probability distributions quickly becomes intractable for high-dimensional data,
which includes many unknowns, such as the anomaly onset time and subset of anomalous
dimensions, in addition to the parameters of the nominal and anomalous models. To tackle
with this complexity, ref. [22] proposed a relaxed version of CUSUM in which each data
stream is assumed to be independent of others. However, this univariate method is not
suitable for detecting changes in the correlation between data streams. A sequential test
for detecting changes in the correlation between variables, as well as localizing the highly
correlated variables, in high-dimensional data streams has been proposed in [23]. This is
a parametric method based on the assumption that the observed vectors are multivariate
Gaussian distributed. It is proposed solely for the detection of correlation change between
data streams and does not generalize to other changes in the distribution. In this paper,
we are interested in detecting general changes in unknown distributions, including the
changes in correlation structure.

k-nearest-neighbor (kNN) distance-based methods are geometric methods that are
based on the assumption that anomalous data instances occur far from the nominal in-
stances. For instance, refs. [24,25] have proposed nonparametric outlier detection tech-
niques based on the minimum volume set (MVS) of the nominal data. MVS corresponds to
the region of greatest probability density with minimum data volume and is known to be
useful for anomaly detection [26] based on the assumption that anomalies occur in the less
concentrated regions of the nominal dataset. These nonparametric outlier detection meth-
ods estimate the MVS of nominal training samples using kNN graphs, and declare a data
point as anomalous if it lies outside the MVS. Despite being scalable to high-dimensional
and heterogeneous data, they do not consider the temporal anomaly information, and thus
are prone to higher false alarm rates compared to sequential anomaly detection methods.
Similarly, ref. [27] proposed a kNN graph-based method that computes an anomaly score
for each observation and declares an anomaly by thresholding the score value. In this paper,
as opposed to the outlier detection methods which treat a single outlier as an anomaly,
we consider an anomaly to consist of persistent outliers and investigate sequential and
nonparametric detection of such anomalies using the temporal information in data streams.
Recently, ref. [28] proposed a nonparametric kNN-based sequential anomaly detection
method for multivariate observations. This method computes the test statistic based on
the number of kNN edges at different splitting points within a window and stops the test
whenever the test statistics exceed a threshold. Due to its window-based nature this method
has inherent limitations in achieving small detection delays. It also recomputes the kNN
graphs at every time instance and for every splitting point, therefore its computational
complexity is note suitable for real-time applications. In another recent work, ref. [29]
proposed a distance-based and CUSUM-like change detection method for attributed graphs.
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Attributed graphs are first mapped into numeric vectors, and then the distance between
the mean response of an observation window and the mean response of the training data
are computed via a CUSUM-like sequential algorithm. In addition to the limitations arising
from the window-based nature of the method, the local relations between samples are
disregarded due to considering only the mean response of the training set. As a result, in
cases where training data has a multimodal distribution, this method will not be effective.
As compared to [29], we take into account the local relations between the data instances.

3. Problem Formulation

Throughout the paper, vectors and matrices are represented by boldface lowercase
and uppercase letters, respectively. Script letters denote sets, e.g., X . Vectors are organized
in a column unless otherwise stated. Probability and expectation are denoted with P and
E, respectively. Suppose that a system is observed through d-dimensional observations
Xt = {x1, x2, . . . , xt} in time. The objective is to detect an anomaly occurring at an unknown
time τ as soon as possible while satisfying a false alarm constraint. This problem can be
formulated as a change detection problem as follows:

f = f0, t < τ, f = f1( 6= f0), t ≥ τ, (1)

where f is the true probability distribution of observations, f0 and f1 are the nominal and
anomaly probability distributions, respectively. The objective of the problem is to minimize
the average detection delay while satisfying a false alarm constraint, i.e.,

inf
T

Eτ [(T − τ)+] subject to E∞[T] ≥ β, (2)

where T denotes the alarm (i.e., stopping) time, Eτ represents the expectation given that
change occurs at τ, (.)+ = max(., 0), and E∞ denotes the expectation given that no change
occurs, i.e., the expectation of false alarm period.

Lorden’s minimax problem is a commonly used version of the above problem [30],
in which the goal is to minimize the worst-case average detection delay subject to a false
alarm constraint:

inf
T

sup
τ

ess sup
Xτ

Eτ [(T − τ)+|Xτ ] s.t. E∞[T] ≥ β, (3)

where “ess sup” denotes essential supremum which is equivalent to supremum in practice.
In simple words, the minimax criterion minimizes the average detection delay for the
least favorable change-point and the least favorable history of measurements up to the
change-point while the average false alarm period is lower bounded by β.

The CUSUM test provides the optimum solution to the minimax problem [21], given by (3):

St = max{0, St−1 + `t},
Tc = inf{t : St ≥ hc},

(4)

where St is the cumulative decision statistic up to time t with S0 = 0, Tc is the stopping
time, `t = log f1(xt)

f0(xt)
is the log-likelihood ratio at time t, and hc is a decision threshold,

selected in a way to satisfy a given false alarm constraint. Considering `t as a statistical
evidence for anomaly the CUSUM algorithm continues accumulating it, and declares
an anomaly the first time the accumulated evidence St exceeds a threshold hc, that is
chosen sufficiently large for reliable detection. CUSUM requires the complete knowledge
of the probability distributions f0 and f1. However, in real-world applications, the true
probability distributions are typically unknown. Even when f0 and f1 are known up to their
parameters, and the parameters are estimated using the maximum likelihood approach, the
procedure known as Generalized CUSUM (G-CUSUM) achieves only asymptotic optimality.
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Moreover, CUSUM and in general parametric methods are limited to the detection of certain
anomaly types whose true probability distribution matches the assumed f1 well.

In high-dimensional problems that require multivariate analysis, estimating the nomi-
nal probability distribution is typically not tractable, especially when the data dimensions
are heterogeneous, e.g., environmental sensor data consisting of wind speed, direction, air
temperature, pressure, humidity, weather condition (whether it is rainy, sunny or cloudy).
Considering the wide range of possible anomalies it is even more intractable to estimate
the anomaly probability distribution. In such problems, knowing the probability distribu-
tions and parameters is highly complicated if not impossible, limiting the applicability of
CUSUM and parametric methods in general.

4. Proposed Detection Method

We propose a kNN-based sequential anomaly detection method called Online Dis-
crepancy Test (ODIT). In this section, we elaborate on the motivation behind ODIT, prove
its asymptotic optimality in the minimax sense under certain conditions, and extensively
analyze its computational complexity.

The rationale behind using kNN distance for anomaly detection is the similarity
between the inverse kNN distance and likelihood. Specifically, for f (xi) ≥ f (xj), xi, xj ∈ X ,
it is expected that the distance gk(xi) of xi to its kth nearest neighbor in X is smaller
than that of xj. This probability increases with the size of X , i.e., lim|X |→∞ P(gk(xi) ≤
gk(xj)) = 1. This in turn provides grounds for using the difference of kNN distances in
ODIT to approximate the log-likelihood ratio `t. The similarity between the likelihood of
data points and the inverse kNN distance is shown in Figure 1 for several distributions.
We consider Gaussian, Poisson and multinomial distributions to illustrate the similarity
of 1/gk(x) and f (x) for three disparate data types, real-valued numeric, integer-valued
numeric and categorical, respectively. The inverse kNN distance graphs are scaled down
to match the likelihood figure for the purpose of visualization. As shown in Figure 1a
with |X | = 106, the inverse of kNN distance approximates the likelihood very well for
the standard Gaussian random variable. Despite some discrepancy for the Poisson and
multinomial cases due to the discreteness of these random variables, it may still serve well
the purpose of approximating the log-likelihood ratio. For these discrete cases, to avoid
zero kNN distance we consider much smaller number of data points, 10 and 50 for Poisson
and multinomial, respectively. Figure 1b,c are obtained by averaging over 5× 105 and
104 trials, respectively. In order to show the similarity for a more complex distribution, in
Figure 1d we consider a two-dimensional vector of a categorical random variable and a
real-valued random variable with arbitrary distribution and 104 data points.

4.1. Online Discrepancy Test (ODIT)

The proposed ODIT online anomaly detector is composed of two phases: (1) first
through an offline training phase, the algorithm trains on a training set of nominal historic
observations, (2) an online testing phase, in which the algorithm tests the incoming obser-
vations, until it detects a change in observations, w.r.t. the nominal notion. In the training
phase, assuming a training set XN consisting of N nominal data instances, it randomly
partitions XN into two sets XN1 and XN2 , where N1 + N2 = N, for computational efficiency
as in the bipartite GEM algorithm [25]. Then, using the kNN distances {gk(xm)} between
each node xm ∈ XN1 and its k nearest neighbors in XN2 ODIT finds an estimate Ω̂α for the
minimum volume set (MVS) Ωα given by

Ωα = argmin
A

∫
A

dx s.t.
∫
A

f0(x)dx ≥ 1− α, (5)

where α ∈ (0, 1) is a significance level, e.g., 0.05. Ωα represents the most compact set of
observations under nominal operation while its complement Ωα corresponds to the tail events
(i.e., outliers) under nominal operation at significance level α. Then, in the test phase, it
compares the kNN distances gk(x) between a test data instance x and its k nearest neighbors in
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X2 with Ω̂α to compute a negative/positive anomaly evidence for anomaly x and accumulates
it over time for reliable detection. Roughly, the greater gk(x) is, the less likely x comes from the
same distribution f0 as the nominal points. The estimate Ω̂α provides a reference to evaluate
gk(x) and compute the negative/positive anomaly evidence for x.
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Figure 1. Similarity between inverse kNN distance 1/gk(x) and likelihood f (x) for k = 1.
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Specifically, in the training phase, to estimate Ωα ODIT ranks the points in XN1 in the
ascending order {x(1), . . . , x(N1)

} in terms of the total distance

Lm =
k

∑
n=k−s+1

gn(xm)
γ, (6)

where gn(xm) is the Euclidean distance between point xm ∈ XN1 and its nth nearest
neighbor in XN2 , s ∈ [1, k] is a fixed number introduced for convenience, and γ > 0 is the
weight. Next, it picks the first K points X K

N1
= {x(1), . . . , x(K)} ⊂ XN1 with the smallest

total distances {L(1), . . . , L(K)} to estimate the MVS Ωα, i.e., Ω̂α = X K
N1

. It is known [25]
that X K

N1
converges to Ωα as

lim
K,N1→∞

K/N1 → 1− α.

Hence, K is chosen as K = bN1(1− α)c, where b·c is the floor operator.
In the test phase, for each data instance xt, ODIT firstly computes the total distance

Lt with respect to the second training set XN2 as in (6). Then, it computes the anomaly
evidence, which could be either positive or negative, by comparing Lt with the MVS model
found in the training phase through the borderline total distance L(K)

Dt = d(log Lt − log L(K)), (7)

where d is the number of data dimensions. Finally, it updates a detection statistic ∆t which
accumulates the anomaly evidence Dt over time, and raises an anomaly alarm the first time
∆t crosses a predefined threshold,

∆t = max{∆t−1 + Dt, 0}, ∆0 = 0,

T = min{t : ∆t ≥ h},
(8)

which is a CUSUM-like procedure (cf. (4)). The ODIT procedure is summarized in Algorithm 1.

Algorithm 1 The proposed ODIT procedure

1: Input: XN , k, s, α, h
2: Initialize: ∆← 0, t← 1
3: Training phase:
4: Randomly partition XN into two sets XN1 and XN2
5: For each xm ∈ XN1 compute Lm as in (6)
6: Find L(K) by selecting the Kth smallest Lm
7: Test phase:
8: while ∆ < h do
9: Get new data xt and compute Dt as in (7)

10: ∆ = max{∆ + Dt, 0}
11: t← t + 1
12: Declare Anomaly

The specific form of the anomaly evidence Dt for each test instance xt enables the
asymptotic optimality of ODIT in the minimax sense, as shown next.

Theorem 1. When the nominal distribution f0(xt) is finite and continuous, and the anomalous
distribution f1(xt) is a uniform distribution, as the training set grows, the ODIT statistic Dt
converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as N2 → ∞, (9)



Sensors 2022, 22, 8264 8 of 22

i.e., ODIT converges to CUSUM, which is minimax optimum in minimizing expected detection
delay while satisfying a false alarm constraint.

Proof. Consider a hypersphere St ∈ Rd centered at xt with radius gk(xt), the kNN distance
of xt with respect to the training set XN2 . The maximum likelihood estimate for the
probability of a point being inside St under f0 is given by k/N2. It is known that, as the total
number of points grow, this binomial probability estimate converges to the true probability

mass in St in the mean square sense [31], i.e., k/N2
L2
→

∫
St

f0(x) dx as N2 → ∞. Hence, the

probability density estimate f̂0(xt) =
k/N2

vdgk(xt)d , where vdgk(xt)d is the volume of St with

the appropriate constant vd, converges to the actual probability density function, f̂0(xt)
p→

f0(xt) as N2 → ∞, since St shrinks and gk(xt)→ 0. Similarly, considering a hypersphere
S(K) ∈ Rd around x(K) which includes k points with its radius gk(x(K)), we see that as N2 →
∞, gk(x(K)) → 0 and f̂0(x(K)) =

k/N2
vdgk(x(K))d

p→ f0(x(K)). Assuming a uniform distribution

f1(x) = f0(x(K)), ∀x, we conclude with log

k/N2
vd gk(x(K))

d

k/N2
vd gk(xt)d

= d
[
log gk(xt)− log gk(x(K))

] p→

log f1(xt)
f0(xt)

as N2 → ∞, where Lt = gk(xt) for s = γ = 1. For γ values different than 1, Dt

converges to the log-likelihood ratio scaled by γ.

Note that ODIT does not train on any anomalous data, i.e., does not use any knowledge
of anomaly to be detected, while this generality is an attractive trait as it allows detection of
any statistical anomaly, it also inevitably limits the performance for known anomaly types
on which detectors can train. In Theorem 1, we show that in the lack of knowledge about
anomalies, ODIT reasonably assumes an uninformative uniform likelihood for the anomaly
case, and achieves asymptotic optimality under this assumption in the CUSUM-sense for
certain parameter choices. However, ODIT is still effective when the anomalies do not
follow the uniform distribution. The assumption of uniformly distributed anomalies is only
needed for asymptotic optimality. In the experiments with real data presented in Section 6,
where the anomalies follow non-uniform distributions, ODIT significantly outperforms the
state-of-the-art methods.

Remark 1 (Parameter Selection): Due to its sequential nature, the parameters of ODIT
either directly or indirectly control the fundamental trade-off between minimizing average
detection delay and false alarm rate. Although ODIT has several parameters, the only main
parameter that directly affects this trade-off is the detection threshold h in (8). Decreasing
h will yield smaller detection delays, i.e., earlier detection, but also more frequent false
alarms. As in other anomaly detection algorithms, it is typically selected to satisfy a false
alarm constraint through a validation step. The other parameters of ODIT, α, k, s, γ, N1, N2
are all auxiliary variables introduced to increase the flexibility of ODIT. The performance
of the proposed method is not very sensitive to the α, k, s, γ, N1, N2 values. For simplicity,
they can be preset to fixed values without requiring any optimization through a validation
process. For example, k = s = γ = 1, α = 0.05, N1 = N − N2 = 0.3N are some typical
values that will yield successful results in many applications. To further improve the
performance of ODIT, these values can be optimized if desired. The significance level α is
at a secondary role supporting h. For fixed h, larger α would result in a smaller estimated
MVS Ω̂α, which in turn results in smaller detection delays, but also more frequent false
alarms since more nominal data points will lie outside the selected MVS. Note that h is the
final decision threshold, whereas α is more of an intermediate parameter. Hence, one can
always set α to a reasonable significance value, such as 0.05, and then adjust h accordingly
to satisfy a desired false alarm rate. Parameters k and s determine how many nearest
neighbors to take into account in computing the total distance Lm, given by (6). Smaller
k would result in being more sensitive to anomaly, hence supports earlier detection, but
at the same time it causes to be more prone to the false alarms due to nominal outliers.
Larger k would result in vice versa. s is an auxiliary parameter chosen for further flexibility
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in this trade-off. s = 1 considers only the kth nearest neighbor while s = k sums all the
first k nearest neighbors. Similar to k, smaller s makes the algorithm more sensitive to
anomaly, but also more prone to nominal outliers. However, the effect of s is secondary
to that of k. k and s should be chosen together to strike a balance between sensitivity to
anomalies and robustness to nominal outliers. 0 < γ < d is the weight which determines
the emphasis on the difference between distances. Large distance values are emphasized
by large γ values and suppressed by small γ values. Regarding the sizes of training sets N2
plays a more important role than N1, as shown in Theorem 1. Specifically, N2 determines
the accuracy of likelihood estimates by the kNN distances, whereas N1 determines how
well the significance level α is satisfied, which is an intermediate parameter as discussed
before. Hence, typically N2 should be chosen larger than N1, where N1 + N2 = N. It
should be noted that the ODIT procedure, given by Algorithm 1, can also work without
partitioning the training set. Partitioning is proposed for computational efficiency when
dealing with large high-dimensional datasets. However, it does not decrease the order of
magnitude in computational complexity since even without partitioning the online testing
procedure already scales linearly with the number of training instances, as opposed to the
bipartite GEM algorithm [25] which decreases the complexity to linear from exponential
using partitioning. As a result, Algorithm 1 can be used without partitioning the training
set, especially for small datasets.

Remark 2 (Graph Interpretation): The K points in MVS estimate X K
N1

and their k nearest

neighbors in XN2 form an Euclidean kNN graph G = (X K
N1

, E), where X K
N1

is the set of
vertices and E is the set of edges connecting X K

N1
to the neighbors in XN2 . The constructed

graph G minimizes the total edge length ∑K
m=1 Lm among all possible K-point kNN graphs

between XN1 and XN2 . The computation of anomaly evidence Dt in (7) can then be inter-
preted as the increase/decrease in the log of total edge length if the K-kNN graph were to
include the test point xt.

Remark 3 (Comparisons): ODIT learns Ω̂α using kNN distances similarly to the outlier
detection method called Geometric Entropy Minimization (GEM) [24,25]. However, in the
test phase, unlike GEM, which declares anomaly even when a single test point falls outside
the MVS, ODIT sequentially updates a test statistic ∆t using the closeness/remoteness of
the test point to the MVS, and declares anomaly only when ∆t is large enough, i.e., there is
enough anomaly evidence with respect to a false alarm constraint. Doing so ODIT is able
to timely and accurately detect persistent anomalies, as shown theoretically in Theorem 1,
whereas one-shot outlier detectors like GEM are prone to high false alarm rates due to
the limitation of significance tests [32,33]. The sequential detection structure of ODIT
resembles that of CUSUM albeit with fundamental differences. Actually, the test statistic of
ODIT implements a discrepancy function motivated by the discrepancy theory [34] and
discrepancy norm [35], hence the name Online Discrepancy Test (ODIT). The nonparametric
nature of ODIT does not require any knowledge of the nominal and anomaly probability
distributions, as opposed to CUSUM. Moreover, the practical relaxations of CUSUM, such
as G-CUSUM and independent CUSUM [22], cannot be applied to challenging scenarios
such as high-dimensional systems which require multivariate anomaly detection with
little or no knowledge of anomaly types. On the other hand, ODIT scales well to high-
dimensional systems for multivariate detection, as discussed next.

4.2. Computational Complexity

Next, we analyze the computational complexity of our proposed method. Training
phase of ODIT requires the kNN distances between each pair of the data points in the
two training sets. Therefore, the time complexity of training phase is O(N1N2d), where
d is the data dimensionality. The space complexity of training is O(N2d) since N2 points
are stored for testing. Note that training is performed once offline, thus the complexity
of online testing is usually critical for scalability. In the test phase, computing the kNN
distance of a test point among all points in the second training set takes O(N2d) time. The
space complexity of testing is not significant as the test statistic is updated recursively.
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Consequently, the proposed ODIT algorithm linearly scales with the data dimensionality
d both in training and testing. In the online testing phase, it also scales linearly with the
number of training points. For high-dimensional systems with abundance of training data,
the online testing time could be the bottleneck in implementing ODIT.

kNN Approximation: Computing the nearest neighbors of a query point is the most
computationally expensive part of the algorithm as the distance to every other point
in the second training data needs to be computed to select the k smallest ones. As the
dimensionality increases and the training size grows, the algorithm becomes less efficient in
terms of the running time. To this end, we propose to approximate the kNN distance rather
than computing its exact value. It is natural to expect that ODIT’s performance will drop
due to the inaccuracy induced by the approximated kNN distances compared to that based
on the exact kNN distances. However, depending on the system specifications, e.g., how
frequently the data arrives and how critical timely detection is, the reduction in running
time through kNN approximation may compensate for the performance loss, as we next
analyze through an experiment. Ref. [36] proposes a kNN distance approximation algorithm
that scales well to high-dimensional data. This algorithm performs hierarchical clustering
by constructing a k-means tree, and approximates the kNN distance by performing a
priority search in the k-means tree, i.e., by searching for the k nearest neighbors only among
a limited number of data points. The computation complexity of constructing the tree is
O(N2dCImax

log N2
log C ), where Imax is the maximum number of iterations in k-means clustering,

C is the number of clusters (a.k.a. branching factor), and log N2
log C is the average height of the

tree. Using the priority search k-means tree algorithm, the computational complexity of
kNN search reduces to O(Bd log N2

log C ), where B� N2 is the maximum number of data points

to examine. Hence, the training complexity reduces to O((N1B + N2CImax)
log N2
log C d) from

O(N1N2d). Note that B � N2 and the number of iterations required for convergence is
small [36]. More importantly, in online testing, the computational complexity per instance
decreases to O(B log N2

log C d) from O(N2d).
Experiment: We experimented with this approximation in our algorithm. The experi-

ment is done in Matlab on an Intel 3.60 GHz processor with 32 GB RAM. In the experiment,
the dimensionality of data is d = 50, the training data size is N = 5× 105, partitioned into
N1 = 0.38N and N2 = 0.62N, and the anomaly is defined as a shift in the mean of Gaussian
observations by 3 standard deviation in 10% of the dimensions. We set the branching factor
for building the priority search k-means tree as C = 100, and the maximum number of
points to examine during search for the k nearest neighbors as B = 1000. The average
computation time for both ODITs based on the exact and the approximate kNN distance is
summarized in Table 1, which presents the time spent for the computation of (7) and (8)
per observation. It is seen that the approximation method drops the average running time
per observation to about 1/14 of that of the exact method.

Table 1. Average computation overhead of original ODIT and efficient ODIT per sample.

Average Execution Time (s)

Exact kNN Approximate kNN

0.0750 0.0054

To compare the original and efficient ODITs in systems with different specifications,
in terms of the frequency of data arrival, we considered the following two scenarios:
(i) data arrives every 1 s, and (ii) data arrives every 0.01 s. Figures 2 and 3 compare
the decision statistic ∆t given in Equation (8) and average performance of ODIT based
on exact and approximate kNN in the two scenarios. Considering the extra samples
needed for detection after the anomaly onset, as well as the computation time overhead
for the last sample before detection, the actual detection delay in time unit is given by
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sample delay × sampling period + computational overhead. Depending on the sampling
period, either exact kNN or approximate kNN could be more advantageous. For a sampling
period that is smaller than the computation overhead, exact kNN computations are usually
not feasible, causing the original ODIT to miss multiple samples while performing the test
for a data instance, as can be seen in the staircase statistic in solid blue in the bottom figure
of Figure 2. Therefore, in such a case, approximate kNN computations are preferred over
the exact kNN computations in terms of the actual detection delay (see the bottom figure in
Figure 3). Whereas for a sufficiently large sampling period, the delay is mainly due to the
extra samples, thus exact kNN computations yield better results this case, as shown in the
top figure in Figure 3.

Figure 2. ODIT statistics based on exact and approximate kNN distances when Tsampling = 1 s (top)
and Tsampling = 0.01 s (bottom).

Figure 3. Comparison between performance of ODIT based on exact and approximate kNN distances
in terms of seconds for Tsampling = 1 s (top) and Tsampling = 0.01 s (bottom).

Summary of ODIT: Here we highlight the prominent features of the proposed ODIT
anomaly detector:

• The sequential nature of ODIT makes it suitable for real-time systems, and especially for
systems in which quick and accurate detection is critical. Additionally, as the nominal
training set grows, it asymptotically achieves the minimax optimality in terms of quick
and accurate detection when anomaly is from uniform distribution.

• It is capable of performing multivariate detection in high-dimensional systems, as illus-
trated in Section 6, thanks to its nonparametric and scalable nature.



Sensors 2022, 22, 8264 12 of 22

• ODIT can detect unknown, rare, and previously unseen anomaly types since it does not
depend on any assumption about anomalies.

5. Anomaly Localization Using ODIT

In this section, we propose a localization strategy to identify the data dimensions in
which the detected anomaly occurs so that necessary steps can be taken to mitigate the
anomaly. Specifically, after an anomaly is detected in ODIT, our objective is to identify
the dimensions that caused the detection statistic ∆t to increase considerably, ultimately
resulting in the detection. Our approach to perform this task is by examining the contri-
bution of each dimension individually to the decision statistics. In the case of detection
by ODIT, an increase in the total distance Lt, given by (6), leads to an increase in the
anomaly evidence Dt, given by (7), finally leading to an increase in the detection statistic
∆t, given by (8), and consequently the anomaly alarm. Let us assume xt is the test data
instance, and {y1, . . . , yk} are its k nearest neighbors in the train set. The total kNN distance
Lt = ∑k

n=k−s+1 ‖xt − yn‖γ, for γ = 2, can be written in terms of the d data dimensions as

Lt =
d

∑
i=1

δi
t, where δi

t =
k

∑
n=k−s+1

(xi
t − yi

n)
2, (10)

and xi
t and yi

n are the ith dimensions of the observation xt and its nth nearest neighbor
yn. δi

t is the contribution of ith dimension of the observation xt at time t to the detection
statistic. Therefore, by analyzing δi

t for each dimension i during the final increase period of
∆t, which causes the anomaly alarm, we can identify the dimensions in which anomaly
has been observed. To this end, we propose to use a recent history of Qi = {δi

q : q =
τ̂ + 1, . . . , τ̂ + S, ∀i} since the last time ∆q = 0. This time τ̂, the most recent time instance
when the detection statistic was zero, can be seen as an estimate of the anomaly onset
time. Finally, we apply a t-test on the S samples in Q to decide whether each dimension i
is anomalous.

In particular, we propose the following anomaly localization procedure after the alarm
is raised at time T:

1. Find τ̂ = max{t < T : ∆t = 0}
2. Compute the sample mean and sample standard deviation of Qi for each dimension i:

δi =
1
S

τ̂+S

∑
t=τ̂+1

δi
t and ηi =

√√√√ 1
S− 1

τ̂+S

∑
t=τ̂+1

(δi
t − δi)2 (11)

3. Identify the anomalous dimensions by applying a t-test:

if
δi − µi

ηi/
√

S
≥ θ, then dimension i is anomalous, (12)

where µi is the sample mean of nominal training {δi
1, . . . , δi

N1
} values, and θ is the (1− β)th

percentile, for significance level β, of Student’s t-distribution with S− 1 degrees of freedom.
The significance level β, for which a typical value is 0.05, controls a balance be-

tween sensitivity to anomalies and robustness to nominal outliers. For given β and S
values, the threshold θ can be easily found from a lookup table for Student’s t-distribution
(e.g., θ = 6.314 for β = 0.05 and S = 2). The number of samples S needs to be at least
2 to have a degree of freedom at least 1. In practice, t-test is commonly used for small
sample sizes, therefore S does not need to be large. Indeed, larger S would cause longer
reaction time since the localization analysis would be performed at time τ̂ + S, which could
be greater than the detection time T, incurring extra delay for localization and reaction
after detection.
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6. Numerical Results

In this section, we evaluate the performance of our proposed algorithm using synthetic
and real-world data, in a variety of applications. Anomaly localization is evaluated only
when it is applicable to the data and application, i.e., if the anomaly (defined by the
particular data and application) is manifested in a subset of the data dimensions and
the ground truths of anomalous dimensions are available. We compare ODIT with the
state-of-the-art methods suitable for each application using the performance metrics that
are suitable to each problem and widely used in the literature.

6.1. Simulated Data: Change in the Mean

In this experiment, we compare and evaluate the detection and localization perfor-
mance of ODIT with the benchmark methods on the simulated problem of detecting a small
change in the mean of a multivariate distribution. We repeat the experiment discussed
in Section 4.2 with the same simulation setup and ODIT parameters. The only difference
is in the training data size, which is N = 5× 104. The anomalous data has a 3 standard
deviation change in the mean of 5 attributes (10% of 50 dimensions). The nominal and
anomalous data are visualized in Figure 4 using the t-SNE technique [37]. As seen in
Figure 4, detecting anomalies in this scenario is a challenging task when the dimensionality
is reduced to interpretable levels. We compare the performance of our proposed algo-
rithm with CUSUM and two state-of-the-art change-point detection algorithms, namely
sequential Nearest Neighbor (NN)-based CPD [28], and NEWMA [38]. The NN method is
based on the two-sample test method proposed in [39,40], which, given two sample sets,
determines whether they belong to the same distribution by employing a kNN similarity
graph. NN-based sequential CPD performs two-sample test within a sliding window of
observations, in a sequential manner moved by one instance at a time. The test stops as
soon as the minimum normalized number of edges between two samples over all possible
partitions is sufficiently low.

Figure 4. t-SNE plot [37] of the 50-dimensional nominal and anomalous data with change in the mean.

NEWMA [38] is an online and multivariate CPD algorithm, that is based on the
Exponential Weighted Moving Average algorithm (EWMA). EWMA recursively computes
a statistic with an exponential forgetting factor and raises an alarm if the statistics becomes
too far apart from a known value (i.e., it requries a prior knowledge). NEWMA on the
other hand does not require a prior knowledge and instead employs two different EWMA
statistics with different forgetting factors. Rather than explicit selection of the two forgetting
factor hyperparameters, authors propose selection of a window L, which represents the
number of recent samples being compared to old samples. The forgetting factors are then
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selected depending on the choice of L. In our experiments, NN and NEWMA are evaluated
using different window sizes.

The decision statistics of the four algorithms CUSUM, ODIT, NN and NEWMA are
shown in Figure 5. The anomaly (change-point) occurs at time τ = 200. As the observations
after t ≥ τ are from a different probability distribution with respect to the nominal data,
the ODIT and CUSUM statistics start increasing steadily after t = τ. On the other hand,
the NN and NEWMA methods, which are both window-based methods, show increase in
the decision statistics when the change point τ falls within the test observation window,
and decrease after the window passes the change point. Since for smaller window sizes the
increase in decision statistics is smaller, the NEWMA and NN algorithms can fail to detect
the change point due to the small window size.
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Figure 5. Decision statistics of ODIT, CUSUM, NN and NEWMA methods in the synthetic change-
in-the-mean experiment.

The performances of all detectors are compared in Figure 6. The performance of
NN for different window sizes confirms that, as the window size increases, the change
point is detected with a larger delay. In this experiment, all algorithms achieve 100%
detection, that is, the change point is detected in all trials for all false alarm rates. In terms
of average detection delay, CUSUM and generalized CUSUM (CUSUM-G) achieve almost
zero detection delay since the assumed probability distribution (multivariate Gaussian)
conforms with the true one. However, in real-world applications it is typically not possible
to know the true pre- and post-change probability distributions, which consequently limits
the applicability of CUSUM and CUSUM-G in real-world applications. The proposed ODIT
detector achieves much smaller detection delay compared to the practical competitors (NN
and NEWMA) from the literature. The window size L = 100 gave the best performance
for NEWMA.

The ROC curve of ODIT for localization of the anomalous dimensions is shown in
Figure 7 and compared with the straightforward data-filtering approach since the state-
of-the-art detectors do not have a procedure for anomaly localization. The AUC for ODIT
localization achieves 0.9041 while the detector satisfies the false alarm rate of 0.01. The
conventional data filtering approach identifies a dimension as anomalous if its value
exceeds a predefined threshold. Due to the small change ratio in the experiment, the data
filtering approach fails to attain high identification probability while satisfying small false
positive rates.
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Figure 6. Performance comparison of the proposed ODIT, CUSUM, NN, and NEWMA detectors
in the synthetic change-in-the-mean experiment in terms of average detection delay vs. FAR (in
log-scale).
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Figure 7. ROC curve of ODIT and the conventional data filtering approach for identifying anomalous
dimensions in the change-in-the-mean experiment.

6.2. Simulated Data: Change in the Correlation

The nonparametric nature of the proposed ODIT detector makes it suitable for mul-
tivariate detection in high-dimensional and heterogeneous systems. We next show the
advantage of ODIT over a state-of-the-art correlation change detection method [7] in a
challenging setting where anomaly is manifested as a change in the correlation structure
between the individual data streams. The practical importance of this type of anomaly
is well exemplified by the MadIoT attacks introduced in [8], in which high wattage IoT
devices, such as air conditioners and water heaters, are synchronously turned on/off to
cause instability and as a result blackout in the power grid. Following the experiment
settings presented in [7] we simulate a 100-dimensional system that nominally generates
data from a multivariate Gaussian distribution with diagonal covariance Σ0 = diag(σ2

i ),
where σ2

i > 0 is the randomly chosen variance for each dimension. After the change point
τ = 100, 10 data streams become correlated. Specifically, the post-change covariance matrix
Σ1 is generated by replacing a random 10× 10 block of Σ0 with a random matrix sampled
from the Wishart distribution. We make sure that the pre-change and post-change vari-
ances remain the same and only the correlations change. The size of the nominal training
dataset is N = 104. The detector proposed in [7] (QHD) is a nonparametric quickest change
detection algorithm that focuses on detection of change in the correlation structure of
data. Similar to ODIT, it aims to minimize the average detection delay while satisfying
a false alarm constraint. The considered problem is significantly more challenging than
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the change-in-the-mean problem due to the fact that the mean and variance of individual
data-streams do not change. In particular, data instances after the anomaly onset are still
very similar to the nominal instances. To cope with the similarity of the anomaly instances
to the nominal ones, the parameters of ODIT algorithms are set to be k = s = γ = 1,
α = 0.1. Figure 8 compares the detection performances of ODIT and QHD. The J parameter
of QHD is optimized as 9.45. As seen in the figure, especially in the low FAR regime, ODIT
successfully minimizes the average detection delay compared to QHD, which specializes
on correlation change detection.
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Figure 8. Performance evaluation for ODIT and QHD in the correlation monitoring example in terms
of average detection delay vs. false alarm rate (log-scale).

6.3. Seizure Detection

Next, as a real-world application we consider the problem of detecting seizure in
intracranial EEG signals. For patients unresponsive to the medication, the quick and
accurate detection of seizure onsets are crucial for timely neurostimulation treatment to
be effective and stop the seizure. Therefore, seizure detection is a suitable application to
evaluate our proposed method. We use the dataset provided in a Kaggle competition,
namely UPenn and Mayo Clinic’s seizure detection challenge. The dataset contains EEG
signals of 12 subjects, 8 human patients, and 4 dogs. The dataset for each subject is
provided in clips of duration 1 s. (with varying number of samples due to different
sampling frequencies), where each clip belongs to either interictal (nominal) class or the
ictal (seizure or anomaly) class. The dimensionality of signals for each subject varies due to
different number of electrodes for signal sampling. The ground truth (i.e., nominal/seizure
labels) are not available for the test data clips provided in the dataset. Therefore, we
trained the algorithms on a portion of the training data, and tested them on the rest
of the training data. For each subject, we trained ODIT on a nominal dataset of size
N = 20,000 and arranged the testing data for each trial to contain 200 nominal samples
followed by 200 anomalous samples. The algorithm parameters in this experiment are set
to be k = s = γ = 1, α = 0.2. Figure 9 demonstrates the performance comparison of the
methods in terms of average detection delay vs. false alarm rate, averaged over all the
subjects. ODIT can detect seizure as early as 10 samples after the seizure onset when only
0.01 of the detections are false alarms. With the same window size, NEWMA achieves
smaller average detection delay compared to NN, both of which achieve detection delay
around 20 samples while satisfying 0.01 FAR for window size 50. As the window sizes
of NEWMA and NN increases, the detection delay increases for both algorithms. ODIT
achieves the lowest average detection delay, as well as the highest AUC for detection,
as shown in Figure 10 (AUC is 1 for all subjects except for the subject Dog 2, for which
the AUC value is 0.9809). According to Figure 10, NEWMA outperforms NN (both with
window size L = 50) in terms of AUC for each patient.
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Figure 9. Performance comparison of ODIT, NN, NEWMA detectors in the seizure detection
experiment. The performances are evaluated in terms of average detection delay vs. false alarm rate
(in log-scale) and are averaged over all patients and dog subjects.
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Figure 10. Performance comparison of the detectors in terms of the AUC of ROC curve for each subject.

6.4. IoT Botnet Detection

In this section, experiments are performed on the N-BaIoT Botnet attack detection
dataset, which consists of real IoT data traffic observations. These data are collected from
9 IoT devices infected by the Mirai and BASHLITE malware [41,42]. Here we only consider
the Mirai attack dataset. The benign and attack datasets for each device is composed of
115 features summarizing traffic statistics over different temporal windows. The dataset
is collected for each device separately and lacks timestamp. Therefore, we formed the
training and test sets by randomly choosing data instances from each device. To form
a network-wide instance for multivariate detection we stack the chosen instances from
9 devices into a single vector of 1035 dimensions. This way, we obtained a nominal train set
with N = 10,000 instances. We form the test data similarly to the training data, assuming
that a randomly selected device gets compromised and starts sending malicious traffic at
time instance τ = 101. For ODIT, we set parameters as k = s = γ = 1, α = 0.05.

In the experiments, ODIT detects the attack with a zero detection delay for all false
alarm rates in all trials for any threshold value h > 0. Performance of the three meth-
ods are compared in Figure 11 in terms of average detection delay vs. false alarm rate.
It is evident that all methods, achieve low detection delays while ODIT achieves the
smallest detection delay of 0 for all false alarm rate constraints. All three detectors suc-
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cessfully detect all attacks under all false alarm constraints, achieving the AUC value
of 1. We also compare the performance of ODIT to the deep autoencoder-based detec-
tion method, proposed in the original N-BaIoT paper [41]. Autoencoder-based method
trains the model and performs anomaly detection on each device separately. Hence, to
compare methods, we also run ODIT on all devices separately (i.e., instead of perform-
ing network-wide anomaly detection, we perform anomaly detection for each device
separately). Deep autoencoder is a deep neural network architecture composed of an
encoder-decoder pair, which first maps the inputs to their compressed representations
(encode) and reconstructs the original inputs from the representations (decode). Trained
on the nominal data, the model is expected to have small and large errors, respectively, on
reconstructing nominal and anomalous test data. By thresholding the model output for
each observation, this method marks each observation instance as nominal or anomalous
and employs majority voting on a moving window of size ws∗ (to control the false positive
rate). It raises alarm only if the majority of the instances within the window are marked
as anomalous. Due to its window-based majority rule, the sample detection delay (i.e.,
the number of anomalous instances observed before the detection) is at least bws∗

2 c+ 1.
For instance, the false positive rate and average detection delay for devices 1-9, respec-
tively, are (0.01,42), (0.012,11), (0.007,10), (0.024,33), (0.01,17), (0,22), (0,11), (0,12), (0,13).
Whereas, the sequential nature of ODIT enables immediate detection together with zero
false alarm. The optimum window sizes reported in [41] for each device are used for the
autoencoder method.

10
-1

10
0

0

2

4

6

8

10

12

14

ODIT

NN, L = 100

Newma, L = 200

Newma, L = 100

Newma, L = 50

NN, L = 50

Figure 11. Performance evaluation of anomaly detectors in the botnet detection experiment in terms
of the average detection delay vs. FAR.

6.5. Detection of Abnormal Behavior in Surveillance Videos

Automated detection of abnormal events in video surveillance is a time-critical and
challenging problem. In this section, we evaluate our proposed method using benchmark
video anomaly detection datasets, namely ShanghaiTech [43], CUHK Avenue [44], and
UCSD Ped2 [45]. ShanghaiTech dataset consists of 330 training videos and 107 test videos,
recorded in 13 different scenes within the campus of ShanghaiTech University. CUHK
Avenue dataset includes 16 training videos and 21 test videos, where the abnormal behavior
is defined as loitering, running, and throwing objects. UCSD Ped2 dataset consists of 16
training videos and 12 test videos, in which the presence of non-pedestrians is considered
anomalous. For these experiments, we first extract informative features from video frames
and then use ODIT on the extracted features. Our feature extraction component utilizes a
Generative Adversarial Network (GAN) based future frame prediction [46], and an object
detector (YOLOv3) [47] to extract motion, location, and appearance features to facilitate
detection of a broad and unknown class of anomalous events. For each detected object i in
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a video frame Xt, we form a feature vector Fi
t , which consists of the mean squared error

MSE(Xt, X̂t) from the future frame prediction component, the center coordinates and area
of the bounding box of the detected object, and the class probabilities of the detected object.
After an anomaly is detected, for temporal localization of the anomaly, we perform some
fine tuning to better label video frames as nominal or anomalous. Specifically, we find
the frame ODIT statistic ∆t started to grow, i.e., the last time ∆t = 0 before detection, say
τstart. Then, we also determine the frame ∆t stops increasing and keeps decreasing for n,
e.g., 5, consecutive frames, say τend. Finally, we label the frames between τstart and τend
as anomalous, and continue testing for new anomalies with frame τend + 1 by resetting
∆τend = 0.

We compare our proposed method with several state-of-the-art deep learning-based
video anomaly detection methods including MPPCA [48], MPPC + SFA [45], Del et al. [49],
Conv-AE [50], ConvLSTM-AE [51], Growing Gas [52], Stacked RNN [43], Deep Generic [53],
GANs [54], Sultani et al. [2], and Liu et al. [46]. Table 2 compares the performance of our
proposed algorithm with those of the benchmark methods in terms of the frame-level AUC,
the commonly used performance metric in video anomaly detection. Frame-level AUC is
the area under the ROC (receiver operating characteristic) curve which plots true positive
(alarm) rate vs. false positive (alarm) rate considering video frames as data instances.
The AUC values in Table 2 are in the percentage format. It is seen that the proposed
detector outperforms the benchmark algorithms with a significant margin in the CUHK
Avenue and UCSD Ped2 datasets, and achieves a competitive performance in ShanghaiTech
dataset. Since the proposed method uses commonly used feature extractors and differ
from the existing methods in the detection technique, these results show the effectiveness
of the proposed ODIT detector. In the case of the ShanghaiTech dataset, although [46]
achieves a higher AUC, their decision methodology depends on the normalization of the
computed statistics per each video, which requires that the entire video is seen before the
anomalous frames are detected and thus prevents real-time detection. Unlike this method,
ODIT is based on online decision making and can detect anomalies in streaming videos
in real-time. In the experiments, the proposed video anomaly detector makes real-time
decisions at the speed of 25 frames per second (fps). It should be noted that the GAN-
based feature extraction is the limiting part in the 25 fps performance. Even in the largest
dataset, ShanghaiTech, which has around 300,000 training frames and ten object types,
ODIT processes more than 40 fps with exact kNN computations and around 560 fps with
approximate kNN computations.

Table 2. Frame-level AUC comparison on three datasets with benchmark algorithms from the
literature. AUC values are shown in the percentage format, where 100 is the highest possible score
and 0 is the lowest.

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech

MPPCA [48] - 69.3 -
MPPC + SFA [45] - 61.3 -

Del et al. [49] 78.3 - -
Conv-AE [50] 80.0 85.0 60.9

ConvLSTM-AE [51] 77.0 88.1 -
Growing Gas [52] - 93.5 -
Stacked RNN [43] 81.7 92.2 68.0
Deep Generic [53] - 92.2 -

GANs [55] - 88.4 -
Liu et al. [46] 85.1 95.4 72.8

Ours 86.4 97.2 70.9

7. Conclusions

In this paper, we proposed an online and nonparametric anomaly detection algorithm,
ODIT, that enables quick and accurate anomaly detection and localization in high dimen-
sional systems that require multivariate (i.e., joint) monitoring of the system components.
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Our proposed anomaly detection method is generic and applicable to various contexts as it
does not assume specific data types, probability distributions, and anomaly types. It only
requires a nominal training set and achieves asymptotic optimality in terms of minimizing
average detection delay for a given false alarm constraint. We evaluated the performance
of our method in the context of seizure detection, botnet detection, and video anomaly
detection using real datasets, as well as with synthetic data. The experiments verified
the superior performance of the proposed method in online detection and localization of
anomalies as compared to the state-of-the-art algorithms. Extending it to dynamic settings,
such as an IoT network with dynamic topology and changing nominal behavior, remains
to be an important future research direction.
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