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Abstract: This paper considers the problem of real-time detection and classification of power quality
disturbances in power delivery systems. We propose a sequential and multivariate disturbance
detection method (aiming for quick and accurate detection). Our proposed detector follows a non-
parametric and supervised approach, i.e., it learns nominal and anomalous patterns from training
data involving clean and disturbance signals. The multivariate nature of the method enables joint
processing of data from multiple meters, facilitating quicker detection as a result of the cooperative
analysis. We further extend our supervised sequential detection method to a multi-hypothesis
setting, which aims to classify the disturbance events as quickly and accurately as possible in a
real-time manner. The multi-hypothesis method requires a training dataset per hypothesis, i.e., per
each disturbance type as well as the ’no disturbance’ case. The proposed classification method is
demonstrated to quickly and accurately detect and classify power disturbances.

Keywords: power quality disturbances; smart grid; anomaly detection; non-parametric sequential
methods; sequential multi-hypothesis testing

1. Introduction

Power quality (PQ) has become a major concern in power grids. The increasing pene-
tration of renewable energy sources, increasing energy consumption, and the proliferation
of modern electrical equipment are some of the sources of power quality disturbances
(PQDs) that may cause major/minor damages to sensitive equipment and power system
operations, such as blackouts. Due to the catastrophic damages caused by power losses to
the safety, economy, and society, it is important to improve the grid’s reliability, security,
and stability. To that end, the monitoring of the power system is crucial for assessing the
PQ and overcoming the PQ problems in the system [1].

PQD, referring to the voltage/current quality, is the deviation of the voltage/current
waveform from the ideal. In this paper, without loss of generality, we only consider the
voltage quality disturbances. Voltage quality monitoring deals with analyzing the voltage
waveform over time in order to detect and mitigate the voltage issues. Power quality
monitoring allows for gaining better insights about the disturbances in the system, which
in turn can help prevent potential damages, identify sources of disturbances, and make
appropriate mitigating/preventive countermeasures in the system. Therefore, it is highly
important to detect and identify the PQDs, as quickly and accurately as possible, so that
the countermeasures could be taken in time. Fortunately, new technologies employed
in a smart grid, such as high computational power and devices for real-time monitoring,
communications, and automation, can facilitate the real-time detection and identification
of the disturbances.

Although power quality monitoring has been studied for decades, new approaches
are needed due to the emerging technological capabilities of smart grids and the integration
of power grids with renewable energy resources and modern electrical equipment, such as
electric vehicles and Internet-of-Things (IoT) devices.
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2. Related Work

Many existing PQD detection and classification methods rely on frequency-domain or
time-frequency domain analyses of the signals to extract informative features for further
analysis to identify the type of disturbances, e.g., wavelet transform [2], Fourier transform,
short-time Fourier transform (STFT), S-transform [3], etc. These methods are usually
assisted with machine learning (ML)-based classification methods, including decision
tree (DT) [3,4], support vector machine (SVM) [5,6], k-nearest-neighbor-based methods
(kNN) [7–9], and neural networks [10–18].

In [16], the combination of S-transform-based feature extraction and a probabilistic
neural network is used for the classification of eleven power quality disturbances. S-
transform has an advantage over wavelet transform in detecting disturbances under noisy
conditions. Reference [3] proposes extracting five features from the S-transform of the
voltage waveform. These methods are effective in accurately classifying the disturbances;
however, they lack the ability to be applied in real time due to their high computational
complexity. While the problem of detection and classification of PQDs has been studied
a lot, there is limited research on real-time approaches that focus on quick and accurate
detection and classification. A real-time S-transform-based method has been proposed
in [19], where the authors have proposed the use of dynamics to reduce the run-time of the
transform and feature extraction. Despite the lower computational burdens of this method,
it lacks the ability to quickly react to the disturbances due to the relatively large windows
required by such methods. Although the proper window size is typically not discussed in
the relevant literature, it is seen from the presented simulations that usually 10 or 12 cycles
of the waveform are used to extract features in 50 and 60 Hz systems, respectively.

While the majority of existing works consider the concurrent detection and classifica-
tion of PQDs, several other methods focus only on the detection, aimed at detecting the
disturbances as quickly as possible. The methods in references [20] and [21] attempted to
detect (as quickly and accurately as possible) after the PQD occurrences. These methods
attempted to model the nominal and disturbance signals, employing techniques to deal
with the unknown disturbance probability distributions. These methods are effective in
detecting the PQDs very quickly and accurately; however, they do not provide any infor-
mation regarding the type of the detected disturbances, and conventional classification
methods are required to be further employed in order to help with the identification of
PQDs. In this paper, we propose a method that is simple enough to be applied in real
time and is able to quickly and accurately detect and classify the disturbances (we were
motivated by the gap in accurate and timely joint detection and the classification of PQDs).

Contributions

In summary, our contributions to this paper are as follows:

• The quick and accurate detection of PQDs in real-time; we propose a novel sequential,
non-parametric, and supervised disturbance detector. The proposed detector, thanks
to its multivariate nature, facilitates cooperative detection by multiple meters for
coping with noisy measurements.

• The proposed detection method is proven to be asymptotically (as the training sets
grow) optimal in the minimax sense in terms of minimizing the expected detection
delay while satisfying a desired false alarm constraint.

• Extending the proposed detection method, a novel PQD detection and classification
method is proposed, which is empirically shown to outperform the state-of-the-art
techniques in terms of quickness and accuracy.

The remainder of the paper is organized as follows. Section 3 presents the system
model for PQD detection and classification. Section 4.1 focuses on the derivation and
analysis of the proposed sequential PQD detection method. Section 5.3 introduces the
proposed joint detection and classification method for PQD. Finally, Section 6 concludes
the paper with general remarks and future work directions.
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3. System Model

Voltage waveform in the ideal form is a sinusoidal with constant frequency and
magnitude, i.e.,

s(t) = a sin(2π f t + φ), t ∈ R, (1)

where a, f , and φ are the nominal magnitude, frequency, and phase angle, respectively.
In practice, even in the nominal case without disturbance, the observed voltage values
z(t) = s(t) + v(t) are distorted by the measurement noise v(t). After a disturbance occurs
in the system, the voltage measurements become further distorted by an additional dis-
turbance waveform δ(t), i.e., z(t) = s(t) + v(t) + δ(t). Therefore, we can view the voltage
disturbance detection as the change in the distribution of the observed waveform. Let us
define y(t) as the distortion signal added to the ideal waveform s(t). Before and after the oc-
currence of disturbance, y(t) consists of the noise v(t) and the noisy disturbance waveform
measurements v(t) + δ(t), respectively. Since the ideal waveform parameters are determin-
istic and fixed, y(t) is easily calculated by subtracting the deterministic measurements s(t)
from the voltage measurement z(t), i.e., y(t) = z(t)− s(t).

Assume that the voltage measurements are nominal initially, and an unknown dis-
turbance occurs at an unknown time τ. The occurrence of a disturbance in the voltage
waveform can be considered as a change in the distribution of the sampled observations:

yn = vn ∼ P0, nS < τ; yn = δn + vn ∼ P1, nS ≥ τ, (2)

where yn is the sampled observation at time n ∈ Z, S is the sampling period, P0 is the prob-
ability distribution of pre-change observations, i.e., typicallyN (0, σ2), δn is the disturbance
at time n, and P1 is the post-change probability distribution, which is unknown due to the
fact that it depends on the type of disturbance occurring in the system. The objective of this
problem is to detect a PQD as soon as possible and identify the type of PQD among a given
list of known classes.

Sequential change detection (or change-point detection) methods are a class of sta-
tistical methods that have been extensively and successfully applied to many real-time
applications (e.g., [21–24]) with the aim of detecting a change in the statistical distribution
of the observations as quickly and accurately as possible after the occurrence of change in
the observation [25]. In this paper, we aimed for the quick detection and classification of
PQDs, and employed a sequential change detection approach for real-time detection and
classification of PQDs.

4. Sequential Detection of Power Quality Disturbances

CUSUM is a well-known sequential change detection method that is applied in many
application domains to detect changes in the statistical distribution of data [26]. CUSUM
is optimal in the minimax sense [27] in terms of minimizing the detection delay (the time
elapsed from the change time τ until the detection time T) while controlling the false
alarm rate:

inf
T

sup
τ

ess sup
Xτ

Eτ [(T − τ)+|Xτ ] s.t. E∞[H] ≥ β. (3)

In (3), Eτ represents the expectation given the change occurs at time τ, (.)+ = max(., 0),
E∞ indicates the expectation given that the change never occurs, i.e., expected false alarm
period. The “ess sup” indicates essential supremum, which in practice is equivalent to
supremum. To put it simply, the minimax performance criterion minimizes the average
detection delay for the least favorable change-point τ and the least favorable history of mea-
surements Xτ up to the change-point while the average false alarm period is constrained
by β.

Despite being minimax optimal in minimizing the detection delay for a given false
alarm constraint, CUSUM has the drawback of being parametric, i.e., it requires the perfect
knowledge of the pre-change and post-change probability distributions and their parame-
ters. Even if the correct probability distributions are known, the minimax optimality only
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holds asymptotically (as the available data size grows) when the parameters are estimated
from data. The parametric nature of CUSUM limits its applicability in applications such as
power quality monitoring in which the post-change parameters are typically unknown.

The non-parametric and data-driven methods on the other hand are suitable to deal
with unknown probability distributions. A recent non-parametric and sequential anomaly
detection method, called the online discrepancy test (ODIT), was proposed in [28]. It has
been proven effective for achieving quick and accurate anomaly detection in real-world
scenarios with many unknowns in the system model. However, ODIT is a semi-supervised
method that only trains on nominal data. Even though this semi-supervised nature allows
ODIT to be generic and not restricted to a certain list of anomaly types, it also prevents
it from improving its performance on detecting known anomaly types by training on
available data. Specifically, in PQD detection, a detector can be trained on sample data from
the anomaly types of interest, as opposed to other real-world problems where obtaining
anomalous training data are not tractable or desired. Hence, in this section, exploiting
the sequential and data-driven properties of ODIT, we propose a novel supervised PQD
detection method. In the next section, we further propose a multi-class extension for joint
detection and classification.

4.1. Proposed Supervised Detection Method

Given the observed waveforms z(t) and y(t), the d-dimensional feature vector xn ∈ Rd

is extracted using a time-domain or frequency-domain analysis during the time window
[(n− 1)S, nS]. Consider the nominal training set XN = {x1, x2, . . . , xN} consisting of N
nominal data points, as well as an anomaly training set X ′M = {x′1, x′2, . . . , x′M} containing
M disturbance data points. Let us define gi(xn) as the Euclidean distance between the
observation xn and its ith nearest neighbor in XN . Moreover, define Ln as the sum of the k
nearest neighbor (kNN) distances of observation xn with respect to the set XN :

Ln =
k

∑
i=k−s+1

gi(xn), (4)

where s ∈ {1, . . . , k} is a fixed number introduced for convenience. Similarly, L′n denotes
the total kNN distance of xn with respect to the anomaly train set X ′M.

In the testing phase, our method computes the evidence for the anomaly in each
observation xn by comparing the Ln and L′n. This is in contrast with ODIT, which compares
Ln with a baseline statistic computed from nominal training data since it does not utilize
any anomalous training data. Assuming sufficiently large nominal and anomaly sets, xn is
more likely to be nominal if Ln < L′n, i.e., the observation is closer to the nominal dataset
than the anomalous one. On the other hand, in the case of Ln > L′n, the observation is more
likely to be anomalous. In the proposed supervised detector, the anomaly evidence for
each observation is computed by:

Dn = d(log Ln − log L′n) + log(N/M), (5)

where d is the dimensionality of data, and N and M are the sizes of the nominal and anomaly
datasets, respectively. In practice, due to the inherent difficulty of acquiring anomalous
observations, there is typically an imbalance between nominal and anomaly datasets. The
kNN distances in a dense nominal dataset are expected to be smaller than those in a sparse
anomaly dataset. Hence, log(N/M) serves as a correction factor, introduced to treat the
imbalance between two datasets. In particular, log(N/M) > 0 compensates for Ln being
unfairly smaller than L′n. Dn denotes the positive/negative evidence for the anomaly.
Negative Dn suggests that the observation is more similar to the nominal dataset while the
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positive Dn means the observation is more similar to the anomalous dataset. The update
and stopping rules of the proposed method, given by

∆n = max{∆n−1 + Dn, 0}, ∆0 = 0,

T = min{n : ∆n ≥ h},
(6)

are similar to those of the ODIT and CUSUM. That is, it recursively updates a detection
statistic ∆n by accumulating the anomaly evidence over time and raising an alarm as soon
as ∆n exceeds a predefined threshold h, selected in a way to strike a balance between the
detection delay and false alarm rates.

As the training datasets grow, the detector proposed in Equations (4)–(6) achieves
asymptotic optimality in the minimax sense, as shown in the following theorem.

Theorem 1. When the nominal distribution f0(xn) and anomalous distribution f1(xn) are finite
and continuous, as the training sets grow, the statistic Dn given by (5) converges in probability to
the log-likelihood ratio,

Dn
p→ log

f1(xn)

f0(xn)
as M, N → ∞, (7)

i.e., the method converges to CUSUM, which is minimax optimum in minimizing the expected
detection delay while satisfying a false alarm constraint.

Proof. Consider a hypersphere St ∈ Rd centered at xn with radius gk(xn), the kNN distance
of xn with respect to nominal set XN . The maximum likelihood estimate for the probability
of a point being inside St under f0 is given by k/N. It is known that, as the total number
of points grows, this binomial probability estimate converges to the true probability mass

in St in the mean square sense [29], i.e., k/N L2
→
∫
St

f0(x) dx as N → ∞. Hence, the

probability density estimate f̂0(xn) =
k/N

Vdgk(xn)d , where Vdgk(xn)d is the volume of St with

the appropriate constant Vd, converges to the actual probability density function, f̂0(xn)
p→

f0(xn) as N → ∞ since St shrinks and gk(xn)→ 0. Similarly, we can show that k/M
Vdg′k(xn)d

p→
f1(xn) as M → ∞, where g′k(xn) is the kNN distance of xn in the anomalous training set

X ′M. Hence, we conclude with log
k/M

Vd g′k(xn)d

k/N
Vd gk(xn)d

= d
[
log gk(xn)− log g′k(xn)

]
+ log(N/M)

p→

log f1(xn)
f0(xn)

as M, N → ∞, where Ln = gk(xn) and L′n = g′k(xn) for s = 1.

Remark 1. In practice, the nominal and anomalous datasets may overlap. While the extent of
overlap depends on the application, this may happen due to either the non-ideality of the feature space
in terms of differentiating the nominal and anomalous data or the difficulty and inaccuracy inherent
in anomalous data acquisition, e.g., some data points labeled as anomalous may be nominal in nature.
For this reason, the proposed detector may require a pre-processing step, in which the anomalous
dataset is cleaned of any data point, which is very similar to the nominal dataset. Specifically, given
a statistical significance level α (e.g., 0.05), we eliminate any x′m ∈ X ′M from the anomalous training
set whose total kNN distance is smaller than the bNαcth largest kNN distance in the nominal
training set with respect to itself, i.e.,

X clean
M = X ′M \ {x′m ∈ X ′M : Lx′m ≤ L(Nα)}, (8)

where b·c is the floor operator. Following the pre-processing step, in Equation (5), L′n is calculated
with respect to X clean

M , and M is the size of X clean
M .

4.2. Simulation Results

In the simulations, we generate the disturbance signals using the Matlab/Simulink
SimPowerSystems toolbox. Following [21], the voltage sag, swell, and oscillatory transient
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disturbances are induced by a distribution line fault, a sudden reduction in load, and
capacitor bank switching, simulated by the circuits shown in Figures 1–3. For example, in
Figure 2, initially, the switch connecting Load 1 to the system is closed, and approximately
at time 0.02 s the switch opens and the load of the system suddenly decreases. The voltage
in the system is monitored through the three meters shown in the figure. In the experiments,
the nominal waveform frequency is set to 60 Hz, normalized to the unit magnitude. The
signal sampling frequency (at meters) is set to be 64 samples per cycle. The measurement
noise variance is set to σ2 = 0.1.

Figure 1. Simulink system for generating voltage sag disturbance induced by line fault.
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Figure 2. Simulink system for generating voltage swell disturbance induced by sudden load decrease.

Figure 3. Simulink system for generating voltage oscillatory transient induced by capacitor switching.
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In this section, we apply the proposed detector to the detection of the common voltage
disturbances: sag, swell, and oscillatory transients. We evaluate our proposed detector in
terms of the average detection delay versus the false alarm rate and compare it with the
semi-supervised ODIT [28] and the GLLR method proposed for sequential PQD detection
in [21].

For evaluating the methods, we generated 2000 voltage waveforms for each distur-
bance type, where the disturbance occurs at sample 101 in the observations, e.g., Figure 4.
After isolating the disturbance signal by subtracting the deterministic sine wave from
the test waveform, we compute simple statistical features including average, standard
deviation, RMS value, and auto-correlation within a moving window of size 5, shifted by
1 instance in time.

Figure 4. Voltage waveforms obtained from the circuits are shown in Figures 1–3. Disturbances start
at sample 101.

Figure 5a demonstrates the performance of the three methods, averaged over all three
disturbance types, in terms of the average detection delay versus the probability of false
alarm. We should note that all three methods detect the disturbances 100% of the time. The
decision statistics of the methods (e.g., for voltage sag as depicted in Figure 5b) show an
abrupt steady increase for all methods with the disturbance onset, whereas the average
performance demonstrates that the proposed Supervised ODIT outperforms the GLLR
and semi-supervised ODIT. Comparing the semi-supervised and supervised ODITs, we
see that utilizing additional disturbance data improves the performance. Figure 6 depicts
the average performance of the methods for each disturbance type individually. This
figure confirms that supervised ODIT achieves the lowest detection delay for detecting
all disturbance types. While all three detectors are able to detect the sag and transient
disturbances in a few samples for practical false alarm rates, they need much more samples
to detect the swell disturbance for the same level of false alarm rate. Due to this inherent
difficulty in detecting the swell disturbance, the performance improvement of Supervised
ODIT over the competing methods seems to be small on the linear scale. Its performance
improvement is more clearly seen in the sag and transient cases. Since even very small
thresholds for Supervised ODIT yield false alarm probabilities smaller than 10−1.5 (around
0.03) in these simulations, its delay performance for larger false alarm probabilities is
not shown. Nevertheless, false alarm rates greater than 3% are usually not of interest in
many applications.
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(a)

(b)

Figure 5. Comparison between the proposed supervised ODIT detector and competing methods
GLLR [21] and semi-supervised ODIT [28]. (a) Performance comparison averaged over three voltage
disturbance types, sag, swell, and oscillatory transients. (b) Sample decision statistic for the sag
disturbance.

Figure 6. Cont.
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Figure 6. Performance comparison between the methods for detection of sag, transient, and swell
disturbances with variance σ2 = 0.1.

Figure 7 demonstrates the performance improvement for the detection of sag, swell,
and transient disturbances by the three methods as the number of meters employed in
the system increases. It is seen that the performance of the proposed supervised ODIT
detector improves faster and achieves a much smaller delay than the other two methods.
The figures are obtained for a fixed false alarm rate of 0.01.

Figure 7. Average detection delay vs. number of meters for sag, sell, and transient disturbances.
Detection delays are calculated for the fixed false alarm rate of 0.01.
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5. Classification of Power Quality Disturbances

Power quality disturbances, if not handled and mitigated properly, may cause serious
damage to the grid. In order for proper and quick mitigation of the disturbance, it is
important to identify the type of the event. Early identification of the event type would
allow proper countermeasures to be taken in time. Thus, not only the accurate classification
of the events are important, but also the quick classification of the disturbances is desirable.
To that end, in this section, we consider the online classification of power quality distur-
bances as a sequential joint detection and classification problem, in which the goal is to
detect a disturbance event in the observed system (and to accurately classify it as quickly
as possible).

In the context of change detection, we can view online classification as a multi-
hypothesis change detection problem, where there are several post-change hypotheses.
Thus, the goal is to detect the change as quickly as possible and identify the post-change
hypotheses correctly. Next, in Section 5.1, we formulate the problem of disturbance classifi-
cation as a multi-hypotheses change detection problem, and in Sections 5.2–5.4 we present
and evaluate our multi-hypothesis change detection method.

5.1. Problem Formulation

Consider a disturbance of type q ∈ Q happens at time τ and it changes the probability
distribution f of the observed feature vector xn. We formulate the problem as a multi-
hypotheses change-detection problem, as:

f = f0, t < τ; f = fq( 6= f0), t ≥ τ, q ∈ Q = {1, . . . , Q}, (9)

where f is the true probability distribution of the observations, f0 is the nominal probability
distribution, and fq, q ∈ Q, is the post-change probability distribution for disturbance type
q. The objective of this problem is to find the decision time T which minimizes the average
detection delay while satisfying a constraint on the false alarm and false identification,
which is equivalent to a classification error for the disturbance type:

inf
T

sup
q∈Q

sup
τ

ess sup
Xτ

E
q
τ [(T − τ)+|Xτ ]

s.t. E
q=0
∞ [H] ≥ β, inf

q∈Q
inf

τ
inf

q̂∈Q\q
E

q
τ [(Tq̂ − τ)] ≥ α,

(10)

where E
q
τ is the expectation given that change occurs at τ and post-change disturbance

type is q, Eq=0
∞ is the expectation given that no change occurs, and Tq̂ is the time of false

identification as type q̂ ∈ Q \ q. Put simply, this criterion aims to minimize the average
detection delay for the least favorable change point, post-change hypothesis, and history
of observations, while the average false alarm period is bounded by β, and the average
worst-case false identification period is bounded by α.

5.2. Feature Extraction

Feature extraction is an important step toward the successful detection and classi-
fication of PQDs. It mainly aims to characterize the observed signal with lower dimen-
sional data, i.e., extract useful information from sequential batches of the observed signal.
For lightweight methods which can be deployed in real-time, it is important to compute
simple features in rather small batches (i.e., time windows less than a cycle of sinusoidal
signal). In this work, we employ statistical features that can be computed with small com-
putational overhead while providing useful information to effectively distinguish between
nominal and disturbance waveforms.

Given the observed voltage samples zn and isolated distortion samples yn = zn − sn,
where sn is the deterministic ideal waveform sample, the feature vector xn = [x1

n, . . . , xd
n]

is computed within a sliding window of size wi for each feature i = 1, . . . , d. Specifi-
cally, at time instance n, the ith feature xi

n is computed using either {zn−wi+1, . . . , zn} or
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{yn−wi+1, . . . , yn}. Note that unlike the existing methods in the literature, we calculate
some features using the original voltage readings and the rest using the voltage distortion
measurements. The features and their corresponding window sizes are given in Table 1.
Features, such as the mean value, root mean square, standard deviation, autocorrelation,
and entropy are commonly used statistical features used for PQD classification [30]. Wave-
form length is another time-domain feature mostly used in electromyographic (EMG)
pattern recognition [31–33]. Zero crossing is a measure of the frequency of the signal in
the time domain, which counts the number of times the voltage amplitude crosses zero.
Waveform length measures the complexity of the signal within the window frame. We also
introduce average fluctuation (AF), which measures the average of the absolute fluctuation
value between consecutive points at which the slope of the signal changes. To calculate AF,
as given in (11), first the set I of samples within the window frame at which the slope of
signal changes is found. Next, AF is calculated as the average absolute change between
consecutive indexes mk mk+1, where k refers to the index of elements in I, and mk denotes
its time index.

Table 1. Description of the extracted features. Features defined over yn values use the isolated
distortion observations while others defined over zn values use the original voltage meter readings.
1{·} denotes the indicator function, which takes the value 1 when the inner argument is true and
0 otherwise. In (11), k is the index for the set I ; mk is the time index of the kth element in I ; and |I|
denotes the number of elements in I .

Feature Equation Window Size

1 Distortion at time n yn w1 = 1

2 Root mean square (RMS) RMS =

√
1

w2

w2−1
∑

m=0
y2

n−m w2 = 64

3 Standard deviation
σ =

√√√√ w3−1
∑

m=0
(yn−m−ȳ)2

w3−1
w3 = 64

4 Autocorrelation R =

w4
∑

m=1
(zn−m−z̄)(zn−m+1−z̄)

w4−1
∑

m=0
(zn−m−z̄)2

w4 = 64

5 Entropy E =
w5−1

∑
m=0

log y2
n−m w5 = 64

6 Waveform length WL =
w6
∑

m=1
|zn−m+1 − zn−m| w6 = 64

7 Zero crossing ZC =
w7
∑

m=1
1{(zn−m × zn−m+1) < 0} w7 = 64

8 Average fluctuation
AF = 1

|I|

|I|
∑

k=1
|ymk+1 − ymk |,

I = {m : 1 ≤ m ≤ w8,
(yn−m+1 − yn−m)(yn−m − yn−m−1) < 0}

(11) w8 = 64

5.3. Proposed Disturbance Classification Method: Vector-ODIT

A matrix-CUSUM method was proposed in [34] for online user activity detection. It
performs multi-alternative change detection using a CUSUM-based method. Similar to
CUSUM, matrix-CUSUM requires the probability distributions for all of the post-change
disturbance types, which limits its applicability in PQD classification as the post-change
disturbance parameters are typically unknown. Motivated by matrix-CUSUM, we here
propose vector-ODIT based on the supervised ODIT detector introduced in Section 4.1.
Vector-ODIT not only detects the onset of disturbance but also identifies the type of distur-
bance in a sequential and data-driven manner.
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Assume Q = {1, 2, . . . , Q} is the set of post-change disturbance types, and we have
Q + 1 training datasets

{
X q

Nq
, q ∈ 0 ∪ Q

}
, where X 0

N0
is the nominal dataset of size N0,

and the rest are the datasets of size Nq containing observations of disturbances of type
q ∈ Q. For each q, we define the complement set q̃ = Q \ q and subsequently define the
dataset X q̃

Nq̃
= ∪j∈q̃X

j
Nj

. For each observation at time n, the anomaly evidence Dq
n for each

q ∈ Q
Dq

n = d(log Lq̃
n − log Lq

n) + log(Nq̃/Nq), (12)

where Lq
n and Lq̃

n are the total kNN distances of feature vector xn with respect to the datasets
X q

Nq
and X q̃

Nq̃
, respectively (see Equation (4)). According to Theorem 1, Dq

n approximates

the log-likelihood ratio log fq(xn)

fq̃(xn)
. Each element of the decision statistic vector ∆n =

[∆1
n, . . . , ∆Q

n ] is recursively updated as

∆q
n = max{∆q

n−1 + Dq
n, 0}, ∆q

0 = 0. (13)

T = min{n : ∆q
n ≥ hq, q = 1, . . . , Q}, (14)

and identifies the disturbance type as the index q which causes the alarm. The vector-ODIT
algorithm is summarized in Algorithm 1.

Algorithm 1 The proposed vector-ODIT procedure for PQD classification

1: Input: k, s, α, {X 0
N0

, . . . ,X Q
NQ
}, {h1, . . . , hQ}

2: Initialize: ∆← 0Q×1, n← 0
3: Training phase:
4: Clean datasets according to (8).
5: Test phase:
6: while ∆q

n < hq, ∀q ∈ Q do
7: n← n + 1
8: Obtain new voltage observation zn, compute distortion value yn, and compute

features xn of Table 1.
9: For each q ∈ Q, compute Dq

n and ∆q
n as in Equations (12) and (13).

10: Declare PQD at time n and identify the type as q for which ∆q
n ≥ hq.

5.4. Simulation Results

In this section, we evaluate our PQD classification method in terms of classifying
the disturbances into four classes, voltage sag, swell, oscillatory transient, and harmonics,
using MATLAB. Following the common practice in the literature, signals are generated
synthetically using the following equation [35]

z(t) = δ1(t) sin(2π f t) + δ2(t). (15)

For voltage sag and swell, δ1(t) 6= 0 and δ2(t) = 0. Specifically,

δ1(t) = 1− a[u(t− t1)− u(t− t2)]

for sag, and
δ1(t) = 1 + a[u(t− t1)− u(t− t2)]

for swell, where u(t) denotes the unit step function, a ∈ [0.1, 0.8] is randomly selected
from uniform distribution, and the starting and ending times are also randomly chosen
as t2 − t1 ∈ [T, 9T] (T = 1/ f ). For each PQD class, as well as the nominal class (δ1(t) =
δ2(t) = 0), we generate signals of length 10 cycles with fundamental frequency of f = 50 Hz
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(i.e., T = 0.02 s) and sampling frequency of 50× 64 Hz. For transient and harmonics
disturbances, δ1(t) = 0 and δ2(t) 6= 0. Specifically,

δ2(t) = ∑
i∈{3,5,7}

ki sin(i2π f t)

for harmonics, and

δ2(t) = ae−(t−t1)/τ [u(t− t1)− u(t− t2)] sin(j2π f (t− t1))

for transient, where all parameters are uniformly random with ki ∈ [0.05, 0.3], τ ∈ [3 ms,
50 ms], j ∈ {6, . . . , 18}, a ∈ [0.3, 0.5], and t2 − t1 ∈ [0.5T, 3T]. We populate the per class
training datasets by performing feature extraction according to Section 5.2 within moving
window blocks of the specified sizes, shifted by 1 point at a time. The proposed classification
method does not need any training process, but the training datasets are needed to be
cleaned according to (8) in order to remove the overlapping data instances.

During the test phase, 200 signals of duration 0.2 s per each disturbance type are
generated randomly, i.e., the signal parameters, such as the disturbance starting and ending
time, magnitude, and phase are selected uniformly random within the allowed range.
Figure 8 shows four sample paths for the decision statistics vector ∆n over time. The onset
and end of each disturbance in the signal are shown with the vertical gray dashed lines
in the figures. As the figures suggest, after the occurrence of the disturbance, the decision
statistic corresponding to the correct disturbance type starts to increase persistently, leading
to the detection and classification by the corresponding threshold. Whereas, the other
three decision statistics (representing the cumulative evidence for the other disturbance
types) remain zero or fluctuate subtly above zero. The selection of proper thresholds is
of crucial importance to strike the desired balance between the false alarm rate, classi-
fication accuracy, and classification delay. We empirically set the thresholds (given in
Equation (14)) to maximize the classification accuracy while also keeping the delay suit-
able for real-time decision-making. Typically, smaller thresholds would result in smaller
detection/classification delays, but also larger false alarm rates and lower classification
accuracy, and vice versa for larger thresholds. In simulations, setting the four thresholds
to proper values, we achieve 0.0038 false alarm rate and 98.38% classification accuracy
with the detection/classification delay of 39.46 data samples on average, as shown in
Table 2. The misclassifications are mainly due to the failure to detect the oscillatory tran-
sient disturbance signals or misclassifying them as harmonics. Note that by vector-ODIT,
the detection and classification happen at the same time. The additional classification
capability comes with some degree of larger delays compared to the detection-only results
reported in Section 4.2.

Table 2. The performance of the vector-ODIT in terms of classification delay. The thresholds are set
in a way to achieve the maximum classification accuracy and the minimum false alarm probability.

Disturbance Type Classification Delay in Samples (and in Seconds)

Sag 26.68 (0.0083 s)

Swell 34.62 (0.0108 s)

Oscillatory transient 45.59 (0.0142 s)

Harmonics 51.23 (0.0160 s)

Overall average 39.46 (0.0123 s)



Sensors 2022, 22, 7958 14 of 17

Figure 8. Decision statistics of vector-ODIT for four voltage disturbance types: sag, swell, oscillatory
transient, and harmonics. The disturbance onset and ending times are shown with vertical dashed
gray lines. When the disturbance starts, the corresponding decision statistic successfully increases
steadily, while the other decision statistics remain around zero.

In Table 3, the average performance of the proposed method in terms of the classifica-
tion accuracy for each disturbance type is compared with several state-of-the-art methods
in the literature. The accuracy of each method has been reported for noisy conditions with
signal-to-noise ratio (SNR) value being 20 (or higher as reported in the corresponding
paper). To evaluate the real-time detection and classification capability of methods, we also
present the average delay performance in terms of waveform cycle in Table 3. The proposed
method achieves the presented accuracy in less than one cycle for each disturbance type.
The overall average delay of 39.46 samples, shown in Table 2, corresponds to 0.61 cycles.
However, the existing methods in the literature except [30] require multiple waveform
cycles, typically 10–12, to extract features from frequency-domain analysis such as Fourier,
wavelet, and S transform. Furthermore, in the existing works, how to run the proposed
methods sequentially is not discussed. Hence, we consider moving their feature extraction
windows by the window length after analyzing and classifying each batch. This makes
these methods considerably (around 10 times) slower than the proposed method in terms
of detecting and classifying PQDs. To calculate the exact average delay values for these
methods, we need to know how many disturbance samples are required in the feature
extraction window for successful detection and classification. Since such information is
not reported in [6,14,16,19,35–39], we assume that at least one cycle of the disturbance is
required to be in the feature extraction window. Therefore, we approximate the average
delay as 5.5 cycles, 10 cycles in the worst case, and 1 cycle in the best case.

The FFT and ANN methods [30], as opposed to the other existing methods, uses
16 time-domain and frequency-domain features computed in windows of size 1 cycle
(or 128 samples) shifted by one time unit at each time. Although it achieves above 90%
classification accuracy, we should note that it considers relatively low noise levels with SNR
changing between 35 and 40 dB). Our proposed vector-ODIT method, on the other hand,
achieves above 98% classification accuracy for a higher noise level of 20 dB. We also tested
vector-ODIT under 30 dB. With this lower noise level, it is able to achieve 100% accuracy
and a 0% false alarm rate. Moreover, feature extraction proposed in FFT & ANN [30] relies
on the calculation of total harmonic distortion of the signals, up to the 25th harmonic,
which is much more computationally expensive than the features Vector-ODIT uses.
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Table 3. Performance comparison for classification of sag, swell, oscillatory transient, and harmonics.
The performances are presented in terms of the classification accuracy, the average delay of correct
classification, and false alarm (false classification of the normal signal as a disturbance).

Classification Accuracy/Average Delay (Cycle)

Classification
Method Sag Swell Transient Harmonics Average Normal SNR (dB)

ADALINE &
FFNN [15] 98/5.5 99/5.5 86/5.5 90/5.5 94.3/5.5 - 20

ST & PNN [16] 98/5.5 92/5.5 86/5.5 95/5.5 92/5.5 100 20

FFT &
ANN [30] 91.64/ 0.84 96.46/ 0.84 92.37/ 0.84 97.74/ 0.84 93.49/ 0.84 - 35

DRST &
DAG-SVM [35] 99/5.5 98.5/5.5 97.5/5.5 99.5/5.5 98.33/5.5 100 20

Dynamics &
ST [19] 95/5.5 97/5.5 97/5.5 97/5.5 96.33/5.5 96 20

TQWT &
MSVM [6] 98/5.5 100/5.5 94/5.5 100/5.5 97.33/5.5 - 20–50

WT &
SVM [36] 89/5.5 89/5.5 98/5.5 97/5.5 92/5.5 - 20

SSD Hybrid
Dict. [37] 100/5.5 100/5.5 100/5.5 100/5.5 100/5.5 100 30

Deep
CNN [38] 99.20/5 100/5 99.50/5 100/5.5 99.56/5.5 97.70 20

VMD &
DT [39] 98.2/5.5 97.6/5.5 98.2/5.5 98.5/5.5 98/5.5 100 30

Proposed 99 / 0.41 100/0.54 95.5/0.71 99/0.80 98.38/0.61 99.62 20
100 / 0.41 100/0.54 100/0.71 100/0.80 100/0.61 100 30

6. Conclusions

Detecting and classifying power quality disturbances (PQD) in a timely and accurate
manner was considered. A novel data-driven sequential detector was proposed and its
asymptotic optimality in terms of minimizing the average detection delay in the minimax
sense was proven. Through voltage disturbance simulations, we showed that the proposed
method outperforms the existing sequential detectors, ODIT and GLLR, in terms of quick
detection while satisfying the same false alarm rate. We also proposed a novel sequential
classifier by extending the proposed detector to the multi-hypothesis testing setup. The per-
formance of the proposed classifier was evaluated on four voltage disturbance types (sag,
swell, oscillatory transient, and harmonics) by comparing it with a number of existing
methods. For all disturbance types, it achieved accurate classification (98.38% accuracy
with 0.38% false alarm rate under 20 dB SNR, and 100% accuracy with 0% false alarm
under 30 dB SNR) within a period of less than a waveform cycle (on average 0.61 cycle,
which corresponds to 39.46 samples or 0.0123 s). Thanks to its sequential design, it is much
quicker than the existing methods, which typically take more than 5 cycles to achieve the
same accuracy levels.
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