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Abstract—Recommender systems are widely used in electronic
commerce, social media and online streaming services to provide
personalized recommendations to the users by exploiting past
ratings and interactions. This paper considers the security aspect
with quick and accurate detection of attacks by observing the
newly created profiles sequentially to prevent the damage which
may be incurred by the injection of new profiles with dishonest
ratings. The proposed framework consists of a latent variable
model, which is trained by a variational EM algorithm, followed
by a sequential detection algorithm. The latent variable model
generates homogeneous representations of the users given their
rating history and mixed data-type attributes such as age and
gender. The representations are then exploited to generate uni-
variate statistics to be efficiently used in a CUSUM-like sequential
detection algorithm that can quickly detect persistent attacks
while maintaining low false alarm rates. We apply our proposed
framework to three different real-world datasets and exhibit
superior performance in comparison to the existing baseline
algorithms for both attack profile and sequential detection.
Furthermore, we demonstrate robustness to different attack
strategies and configurations.

Index Terms—Recommender systems, cyber-attack detection,
quickest detection, latent variable model, variational inference.

I. INTRODUCTION

IN most of the commercial platforms, the recommender
systems play a key role in improving the user satisfaction

by providing personalized experiences to ultimately increase
sales and revenue. The recommender systems are mostly data-
driven algorithms where the main source of information is
the user feedback. To provide accurate recommendations for
each user, the algorithms, even the modern ones currently used
by popular services such as Netflix and Amazon, generally
exploit collaborative filtering approaches [1], which are prone
to manipulation [2]. Creating fake profiles and designing rating
entries intelligently can adversely impact the recommendations
for the genuine users. Reasons for such activities include
promoting or nuking a specific item for which the attacker
wants to either increase or decrease sales or popularity. Some
attackers may only aim to disturb the system operation and
reduce its efficiency for the genuine users [3].

The collaborative filtering algorithms exploit the rating
history of the users to extract the information of “closeness”
between the users to recommend items by using the prefer-
ences of the neighboring users [1], [4]. In a system, consisting
of a large number of users and genuine ratings, one can try to
infer the characteristics of genuine user behavior by processing
the ratings and forming distinctive features. The anomalies can
then be detected through these features [4]. Many supervised
learning approaches try to classify the test users based on

their rating profiles [5]. In this case, the assumption is the
availability of the rating profiles of both fake and the genuine
users, which is practically impossible in most applications.
As a result, in the case of different types of attacks the
system is not trained for, the performance of such algorithms
degrades quickly. To remedy this, we only consider the semi-
supervised attack detection in our study which assumes no a
priori information about the attack type.

The main source of information for collaborative filtering is
the rating history of user profiles. Recently, researchers have
begun looking into incorporating side information, including
the user attributes, item features, network structure, social
friend/trust network, etc. to improve the recommendation qual-
ity [6]. Significant improvements in recommendation accuracy
have been achieved by using such additional information
specifically for cold start scenarios [7]. The cold start scenario
defines the setting when the users or items in the system
do not have enough registered ratings or past interactions.
Naturally, the cold start users and items have the potential to
benefit from side information sources. Up to now, the proposed
attack detection algorithms considered solely the ratings and
did not focus on the side information. Intuitively, the evidence
of anomaly coming from the ratings can be aggregated with
the evidence of anomaly coming from the side information.

In this paper, we consider the user attributes as an additional
source of evidence for anomaly detection1. This approach is
quite promising since, for the attackers, accessing the attributes
of genuine users registered in a system requires much higher
in-depth knowledge or sophisticated attack capabilities than
accessing ratings. In this study, we assume the attacker creates
fake profiles by overlooking the compatibility between the
ratings and attributes of genuine users. To this end, we assume
that the attributes are randomly selected while the ratings are
intelligently filled for each fake user. As a result, similar to the
case of improving the recommendation quality for cold start
user/items, we now consider exploiting the side information
to improve attack detection performance by detecting any
mismatch between the attributes and ratings of fake users.

Most of the attack detection frameworks developed for
recommender systems focus on sample-by-sample decision by
ignoring the temporal relationship between the attack users.
However, it is common to observe genuine users who have
different preferences which should be considered as random
outliers (e.g., trying a new movie genre) instead of actual
anomalies. Sample-by-sample outlier detection methods are

1Our preliminary results were presented in [8].
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vulnerable to false alarms in such scenarios [9]. On the other
hand, if the system observes persistent outliers in a short
time interval, there is a good probability that indicates a
real attack. In this study, we aim to detect persistent attacks
by taking temporal relations of the test users into account
and accumulating their anomaly statistics over time. This
method resembles the classical CUSUM sequential change
detection algorithm, which accumulates log-likelihood ratios
(LLR) [10], [11], instead of which we use a novel likelihood-
based statistic. Sequential attack detection provides two ad-
vantages over sample-by-sample profile detection: (i) lowering
the false alarm rate by not labeling the non-persistent outlier
users as attackers, and (ii) increasing the true positive rate by
accumulating the small evidences when the attack is hard to
detect but still persistent.

Sequential change detection methods suit well to quickly
detecting anomalies while satisfying a desired false alarm
constraint. However, the classical sequential change detection
algorithms, such as CUSUM, require the knowledge of the
probability distributions of both genuine and anomalous data
[10], [11]. In recommender systems, it can be assumed that
the genuine data is available to the operator to fit a probability
distribution. However, the vectors associated with the rating
profiles of users are very high-dimensional and sparse. They
also exhibit complex interactions with the vectors of other
users which makes it very hard or otherwise intractable
to model such data by using high dimensional multivariate
probability distributions. The case is even worse for the fake
profiles. There are various attack types, which means it is
practically very difficult to model all kinds of anomalies with
some parametric multivariate distributions. In fact, one can
safely assume the anomalous distribution is totally unknown.
To overcome these problems, we propose to extract a univari-
ate statistic given the high dimensional sparse rating vectors
and the side information of both the users and the items.
Moreover, through single dimensional statistics, we aim to
lower the computational complexity of the detection algorithm
for efficient implementation in time-sensitive online settings.

As shown in Fig. 1, our proposed detection system consists
of a data fusion module, which combines the ratings with user
and item attributes, and a sequential decision making module
for timely detection while controlling the false alarm rate.
After training, the proposed algorithm is capable of processing
the sequentially arriving data in real-time with computationally
efficient updates.

For efficient attack detection in recommender systems,
the main challenges for obtaining useful univariate statistics
are threefold: the statistics should (i) inherently include the
compatibility between the ratings and the attributes, (ii) be
sufficiently informative to distinguish between the genuine
and attack users, and (iii) be easy to compute for quick
evaluation in online settings. To address these challenges,
we first propose, in the first module shown in Fig. 1, a
latent variable model to embed the observed data of genuine
users composed of sparse rating vectors and mixed data-type
user and item attributes. For flexibility, we consider two data
types for the attributes: the numerical and categorical valued,
since these data types are the most common to represent the
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Fig. 1: General structure of the proposed attack detection framework

attributes a user or an item can exhibit (such as age and gender
for the users, and year and genre for the items). The obtained
embeddings lie in a lower dimensional sub-manifold, and it
exhibits a unified latent representation of the compatibility
between the attributes and the ratings. Then, in the second
module (Fig. 1), the trained latent variable model is used to
measure such compatibility for the sequentially received test
entries in an online fashion by producing univariate statistics
which would deviate from the nominal values in case of an
attack. It is important to note that our proposed statistic is
likelihood-based with a closed form expression for the trained
model parameters, which can be computed very efficiently for
each observed data entry in an online setting.

In summary, we have the following contributions to the
literature of attack detection in recommender systems:
• We present a latent variable model to fuse the mixed

data-type attributes of both the users and items, and the
observed ratings. The parameters of the model define a
latent space which inherently relates the attributes and the
ratings of genuine users.

• We propose a univariate statistic to distinguish between
the attackers and the genuine users. The statistic is easily
computed in an online fashion through the trained latent
variable model parameters.

• We propose a novel sequential detection algorithm for
recommender systems by exploiting the univariate statis-
tic computed under the genuine latent space.

• We demonstrate performance improvements over both
sample-by-sample attack profile detection algorithms and
sequential detection algorithms that can only use the
observed ratings through comprehensive experiments on
three popular real world datasets.

II. RELATED WORK

The literature includes many examples for attack types that can
be performed on recommender systems [3], [4]. Subsequently,
a range of attack detection algorithms have been introduced
to mitigate such attacks [5]. We discuss the popular attack
types before briefly explaining the detection algorithms by
categorizing into static and temporal models.

A. Attack Types

Researchers have developed a range of attack prototypes
to demonstrate and study the effects of the attack profile
injection. To form a realistic profile, attackers do not only
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give ratings for the target items, but they also select some filler
items and fill them as well. The attack types basically differ
from each other by the selection criteria of filler items and
the given ratings. An early simple attack type, called random
attack, considered random selection and using the global mean
of all the ratings for the chosen filler items in the system
[12]. Average attack used item specific mean values instead
of the global mean by exploiting more in-depth knowledge
[13]. Bandwagon [12] and popular item [14] attacks were
proposed to decrease the amount of knowledge required for
the average attack while having a similar effect by using the
most popular (liked or rated) items as filler. Some attack types
[15], [16] require specific knowledge of the user ratings. While
they are not easy to implement in practice, they can be used
as target performance bounds. Attack types specialized for
nuking items were proposed in [17]. In this case, the filler
items were selected among the most disliked items and were
given low ratings along with the target item. To prevent the
attack being detected, an obfuscation method was proposed
in [18]. This method similarly uses the most popular items
as filler by modifying the average attack to hide the malicious
activity. [19] proposed a methodology to mislead the detection
algorithms that use clustering. The attack efficiency can be
traded off for better obfuscation if the attacker is aware of the
detection strategy [2]. A recent paper introduced adversarial
algorithms to learn the detection strategy which increases the
effectiveness of attack types [20].

B. Static Detection Algorithms

Among the attack detection algorithms, it is common to ignore
the temporal relations between both the users and ratings. In
this scenario, the observed data consists of observed genuine
and attack user ratings without any temporal dependency. The
algorithms of this type generally form distinctive features by
using the ratings to distinguish the attack profiles from the
genuine ones. By assuming similarity between the influential
[21] and attack users, a set of features was proposed early
in the field [22]. These features were extended to include the
unusual number of ratings as an anomaly indicator in [23]
and the sum of squared deviations of the rating from the
mean values in [24]. In general, the features were then used
in either unsupervised clustering (mostly k-means) [21]–[24]
or supervised classification (kNN, SVM) [25], [26] for final
decision. PCA algorithm was used in [27] to classify highly
correlated user profiles as potential attack users by exploiting
the principal components of the user covariance matrix. A few
components associated with the small eigenvalues were used
as features. A Neyman-Pearson statistical test based on LLRs
was proposed to identify attack types by exploiting the item
selection preferences of the users [19]. A similar algorithm was
based on a latent variable model by examining the entropy of
the rating distributions [28]. A probabilistic model based on
beta distribution was proposed in [29]. Graph-based algorithms
[30]–[32] were also used to identify the most highly correlated
groups as attackers. It should be noted that all the algorithms
discussed in this subsection are examples of batch anomaly
detection which require the entire data for evaluation with no
direct extension for online settings.

C. Temporal Detection Algorithms

To take into account temporal relations between the ratings,
[33] used the features associated with span, frequency and
mount properties. Instead of hand-crafted features, [34] devel-
oped a hidden Markov model to learn temporal rating behavior
and identify the attack users with hierarchical clustering. In
[35], a statistical method was proposed to detect significant
changes in the mean and standard deviation of the ratings
associated with each item. In the anomaly detection literature,
many online algorithms have been proposed specifically for
sequential detection [9]. SVM-based algorithms use kernel
mapping to determine the decision region within nominal data
[36], [37]. However, it is not always straightforward to choose
and compute kernel functions for the defined problem. The
sliding window based Nearest Neighbor (NN) method in [38]
generates a graph after each observation to compute a NN
statistic, which makes it computationally costly. The quickest
detection framework [10], [11] requires exact knowledge of
the data distribution before and after the change. It uses LLRs
to detect change time as quickly as possible by controlling
the false alarm rates, which makes it suitable to the problem
at hand if one can overcome the issue of inferring parametric
distributions for the anomalous and genuine data. For closely
related application of attack detection in reputation systems,
[39] proposed to use a two-sided CUSUM algorithm to detect
the change in the rating distribution of each item by assuming
Gaussian distributed ratings and observing only the mean
parameter and not the variance. [40] improved this approach
by assuming categorically distributed ratings and proposing a
Generalized Likelihood Ratio (GLR) algorithm by replacing
unknown attack distribution with the one estimated from
online data by using maximum likelihood estimation (MLE).

III. PROPOSED FRAMEWORK

In this section, we provide the details of our framework to
detect sequential attacks in recommender systems. First, we
explain the proposed latent variable model for fusing mixed
data-type ratings and side information, as well as variational
expectation-maximization (EM) algorithm to infer the model
parameters from training data. Then, we explain how to
compute an anomaly statistic using the trained model, and
to sequentially detect persistent attacks in an online fashion.

A. Latent Variable Model for Data Fusion

We assume that the observed data consists of mixed data-type
attributes for each user, mixed data-type attributes for each
item, and numerical valued ratings. The users are indexed by
i ∈ {1, . . . , I}, where I is the total number of users. The
items are indexed by j ∈ {1, . . . , J}, where J is the total
number of items. In order to represent this multi-modal data,
we design a probabilistic linear latent variable model. The
graphical representation of the model is shown in Fig.2. For
each user and item, a latent variable is assigned to explain
both the observed ratings and the associated attributes. The
proposed model assumes Gaussian distribution for the latent
variables [41]. Subsequently, zero mean spherical Gaussian
priors are assigned as



4

rij

ui

vj

xi,m yi,n

zj,l wj,q

Wm Hn

Al Bq

α, a, b

α, a, b

i = 1 : I

j = 1 : J

M N

QL

Fig. 2: Graphical model representation of the linear latent variable
model. The upper part is for the users, the lower part is for the items,
and the intersection is for the ratings. xi,m and zj,l denote real-valued
attributes while yi,n and wj,q denote categorical attributes.

p(ui) = N (ui|0K , λ
−1
u IK), (1)

where ui ∈ RK represents the latent variable for user i and
λu is the precision constant. The latent space is assumed to
be K dimensional. We model the real-valued user attributes
by using the following linear Gaussian model:

p(xi,m|ui,Wm,Σxm) = N (xi,m|Wmui,Σxm). (2)

Here, the mean of the mth real-valued observation xi,m ∈
RDm is a linear function of the latent variable ui as in factor
analysis (FA) models [42], where m ∈ {1, . . . ,M}, M is
the total number of real-valued user attributes, and Dm is the
dimension of the observation. Σxm ∈ RDm×Dm is the obser-
vation noise covariance matrix. Wm ∈ RDm×K is the factor
loading matrix. The classical FA models treat the latter two
matrices as fixed and computes the MLE solution. However,
MLE is prone to overfitting, especially when the number of
observations is small and/or there are missing observations
[43]. We treat them as unknown and define random variables
to regularize the problem by assigning conjugate priors. Since
Wm and Σxm are coupled in a non-factorized way in the
likelihood, a natural full conjugate prior is in the form of
normal-inverse-gamma (NIG) distribution [43]:

p(Wm,d, σ
2
xm,d) =N (Wm,d|0, σ2

xm,dα
−1IDm

)

IG(σ2
xm,d|a, b),

(3)

where a and b corresponds to the shape and scale parameters of
the distribution of each diagonal element σ2

xm,d of Σxm, where
d ∈ {1, . . . , Dm}, respectively. A zero mean prior is assigned
for the dth component of factor loading matrix Wm,d, where
α denotes how strong the belief for this prior is. We model
the categorical-valued user attributes yi,n ∈ {1, . . . ,Mn + 1}
by using a linear softmax model:

p(yi,n|ui,Hn) = Cat(yi,n|S(Hnui)), (4)

where n ∈ {1, . . . , N} and N is the total number of categor-
ical attributes. Hn ∈ RMn×K is the factor loading matrix for
the categorical attribute n and Mn is the number of different
categories with the pivot class excluded. Unlike Wm, this
parameter is treated as fixed by following [44] since the
softmax model is shown to be more prone to over-fitting
when variational learning is performed. Note that the bias
terms are removed in the aforementioned linear models to
avoid cluttering. If the attribute variables are fully observed,
the mean value is subtracted as a preprocessing to dropout
the bias term. Otherwise, the optimization algorithm should
take the bias terms into account by evaluating them at each
step separately [45] or by absorbing them into the factor
loading matrices [44]. In this framework, we assume that all
the attributes are fully observed.

The last observation for the users is the rating history.
Although many different models and distributions have been
used to represent the ordinal ratings [46]–[48], we use dot
product Gaussian conditional distribution for each observed
rating since it is simple, reasonable and extensively used:

p(rij |ui,vj) = N (rij |uT
i vj , c

−1), (5)

where c corresponds to the confidence parameter for the
ratings. It can be treated as fixed [45] and optimized by using
MLE or as hyper-parameter [46] and can be optimized via
cross-validation. We use the former and optimize it during
the training. The proposed model is symmetric for both the
user and item sides which means the same type of models
described until now are used for the item side. One can easily
obtain the item side expressions for {vj , zj,l,Al,d,Σzl,wj,q}
by exploiting Fig. 2 and user side expressions. We next show
how to infer the latent variables {ui,vjWm,Al,Σxm,Σzl}
and the model parameters {Hn,Bq, c} that maximize the
likelihood given the training data {rij ,xi,m,yi,n, zj,l,wj,q}.

B. Inferring Latent Variable Model

During model inference, we are interested in retaining the
uncertainties for the user and item latent variables ui and vj as
much as possible since they are central to the model (i.e., they
model both the ratings and the user/item attributes as shown
in Fig. 2). Hence, we compute their complete posterior distri-
butions. We perform maximum a posteriori (MAP) estimation
for other latent variables {Wm,Al,Σxm,Σzl}. We seek MLE
solution for fixed model parameters {Hn,Bq, c}, and cross-
validation is performed for hyperparameters {λ, α, a, b}. EM
is a powerful tool for inferring latent variable models like
ours with posterior inference and fixed point estimation [43].
In the E-step of EM, the posterior distributions of latent
variables are inferred and the sufficient statistics for parameter
estimation are obtained. In the M-step, MLE/MAP estimations
are computed with the sufficient statistics from the E-step.

In this section, we only show the derivations for the user
part of the model to avoid redundancy. Due to the symmetry
of the model, one can easily obtain the equations for the item
part by changing the user variables in the equations with the
appropriate item variables.



5

1) Approximation
The joint probability of the model includes two different

distribution factors; Gaussian and categorical. When exact
inference is not tractable, it is common to use approximations
to perform variational inference [43]. The user/item latent
variables, ui and vj , have Gaussian priors and most of the
features, ratings and real-valued attributes, are modeled with
Gaussian conditional distributions. Thus, it is reasonable to
seek Gaussian posteriors due to Bernstein-von Mises theorem
[49] since the number of Gaussian variables is much larger
than the number of categorical variables. To perform Gaussian
approximation, we approximate the categorical likelihoods
with a quadratic lower bound. Specifically, we employ the
Bohning bound [50], which has been used in [44] and [51]
to provide a lower bound for the LogSumExp (LSE) function
in the categorical likelihoods. After the bound is applied, the
log likelihood of the nth categorical user attribute takes the
following form:

log p(yi,n|ui) ≥ yT
i,nHnui −

1

2
uT
i H

T
n Fu,nHnui

+ gTi,nHnui − ei,n.
(6)

There are three parameters emerging from the bound:

Fu,n =
1

2
(IMn −

1

Mn + 1
1Mn1T

Mn
), (7)

gi,n = Fu,nψi,n − S(ψi,n), (8)

ei,n =
1

2
ψT

i,nFu,nψi,n − S(ψi,n)Tψi,n + lse(ψi,n), (9)

where gi,n and ei,n depend on the free variational parameter
ψi,n. This parameter is subsequently optimized during training
for each data point to form a tight bound. The LSE function
is given by lse(ψi,n) = log(1 +

∑Mu

k=1 expψi,n,k).
2) E-step
In the E-step of the variational EM algorithm, we seek

posteriors of the user and item latent variables {ui,vj} and
compute the sufficient statistics for the M-step. Since the
variational distributions are Gaussian, we need to compute
the mean vector and the covariance matrix for each user
given the rating history and associated attributes. We use an
alternating scheme to update the user and item posteriors since
they are coupled in the complete-data likelihood expression. In
particular, to compute the user latent variables, the item latent
variables are held fixed alongside the observed variables, i.e.,

q(ui|xi,yi, ri,V ) = N (ui|mui,Σui), (10)

where V = [v1, . . . ,vJ ] is the matrix of item latent vari-
ables. After updating the user latent variables, the item latent
variables are updated in the same way by fixing the user
latent variables. In short, two successive E-steps are performed
for the users and the items. Update equations are derived
by following the procedure for linear Gaussian systems [43]
(See Appendix A for details of the inference). The covariance
matrix of each user is computed as:

Σui =(λuIK +

N∑
n=1

HT
n Fu,nHn +

M∑
m=1

W T
mΣ−1

xmWm

+ c(E[V OiV
T ]))−1,

(11)

and the mean vector is computed with following expression:

mui =Σui(c(E[V ]Oiri) +

N∑
n=1

HT
n (yi,n + gi,n)

+

M∑
m=1

W T
mΣ−1

xmxi,m),

(12)

where Oi ∈ RJ×J is the matrix whose elements are binary
indicators of which items user i rated. Lastly, free variational
parameter ψi,n is updated, ψi,n = Hnmui, until convergence.

3) M-step
In the M-step, we compute MAP estimators for the latent

variables {Wm,Al,Σxm,Σzl} and MLE for the model pa-
rameters {Hn,Bq, c}. By setting the gradient of complete data
log-likelihood with respect toWm to zero, we obtain the MAP
estimator as:

Wm =
[∑

i

xi,mE[ui]
T
][
αIK +

∑
i

E[uiu
T
i ]
]−1

. (13)

Here, the sum over the second moment of ui and the sum
over the outer product of the real-valued user attribute and the
mean vector are the sufficient statistics calculated in advance
in the E-step. α is the regularization constant coming from the
NIG prior. For the factor loading matrix Hn of the categorical
attributes, the form is slightly different due to the MLE and
applied quadratic bound:

Hn =
[∑

i

F−1
u,n(yi,n + gi,n)E[ui]

T
][∑

i

E[uiu
T
i ]
]−1

.

(14)
Although the sum over the second moment statistic is the same
with Wm, the part involving mean changes. The categori-
cal observations yi,n are linearly transformed to real-valued
pseudo observations through the intermediate parameters given
by Eq. (7 - 9). MAP estimation for the noise covariance matrix
of the real-valued user attributes is given as:

Σxm =diag
{ 1

I + 2(a+ 1)

[
2b+

∑
k

W 2
m,:,kα+

∑
i

xi,mx
T
i,m

− 2xi,mE[ui]
TW T

m +WmE[uiu
T
i ]W T

m

]}
,

(15)

where Wm is updated in advance as in FA models [42].
Lastly, the confidence parameter for the observed ratings,
whose indices are kept in set Ω in tuples, is updated as follows:

c =
1

|Ω|
∑
i,j∈Ω

E[(rij − uT
i vj)

2]. (16)

The updates are iterated (E-step for the users → E-step for
the items → M-step) until the model likelihood or the model
variables converge. The inferred latent variable model provides
a multi-modal probability distribution for the genuine data.
We next explain how to detect attacks in an online fashion
by computing an anomaly statistic using the likelihood of test
data under the genuine probability distribution.
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C. Attack Detection

Proposed latent variable model provides a unified representa-
tion for the users and the items in the training set. Result-
ing latent space consists of real-valued latent variables and
model parameters that represent both the observed ratings
and the attributes. In other words, we implicitly obtain the
compatibility between the ratings and the attributes. Assuming
the users in the training set are completely genuine, we can
exploit this compatibility through the latent space parameter
set Θ = {Wm,Al,Σxm,Σzl,Hn,Bq, c} to detect anomalies
within the test users registered to the system.

1) Attack Statistic
We propose to extract an attack statistic for each test user

by exploiting the trained latent variable model. We assume
the registration to the recommender system requires the users
to enter their attributes. A registered user can then assign
ratings for different items in the system. Subsequently, we
evaluate the likelihood of ratings and attributes for each new
user under the proposed latent variable model. To this end, we
first need to infer the posterior distributions of the user latent
variables given the attributes and the trained model parameters.
Specifically, for user t, we have the following latent variable:

ut ∼ p(ut|xt,1, . . . ,xt,M ,yt,1, . . . ,yt,N ,Θ, q(V )). (17)

The posterior distribution is conditioned on the observed user
attributes, the latent space parameter set Θ, and the variational
distribution of the item latent variables q(V ). The item latent
variables are inferred during EM training and kept fixed
afterwards. Fortunately, it is easy to compute the posterior
of ut for a new user as it corresponds to one E-step for the
user t using the equations (11) and (12). After the inference,
the rating likelihood is computed through the dot-product
modeling by p(rtj |ut,vj) = N (rtj |uT

t vj , c
−1). Since ut and

vj are random variables, one should take their randomness into
account instead of using only the inner product of the mean
values. We compute a closed form expression for the expected
log-likelihood, as shown in Appendix B, to evaluate how likely
the test data is under the learned nominal model. Since we
eventually infer whether there is an anomaly in the system,
we do not need the exact rating likelihoods, but only need an
accurate comparison of the likelihood of a test instance with
the nominal likelihoods. Since c is fixed, the log-likelihood is
proportional to −(rtj − uT

t vj)
2, which is a random variable.

We compute its expectation using the first and second moment
of uT

t vj as follows:

`tj =

K∑
a=1

[σ2
ra + µ2

ra − 2µrartj ] + r2
tj (18)

The details are given in Appendix B.
In this framework, we propose two different approaches for

attack detection based on the users and the items.
User-based Approach: In this approach, the attack statistic

is sequentially updated for each test user over time, i.e.,
user indices become time indices. Specifically, dt denotes the
anomaly score of user t:

dt =
1

|Ωt|
∑
j∈Ωt

`tj , (19)

where Ωt is the set of items the user t has rated. Since `tj is
proportional to the negative log-likelihood, the anomaly score
for user t, dt, which is the average `tj over the items rated
by user t, is expected to produce high values for the attack
users and low values for the genuine users. Note that the user
latent variables are conditioned on the user attributes, hence
dt will be high whenever the attributes of a test user are not
compatible with his ratings profile with respect to the genuine
latent space parameters. This property of the anomaly score dt
satisfies the necessary condition as a formal and informative
metric to distinguish between the attack and genuine users
by exploiting the compatibility between the attributes and the
ratings. The anomaly score can also be easily computed as it
simply requires averaging over `tj , which has a closed form
expression as shown in (18).

To have a baseline for anomaly scores to compare against
in the online test phase, in the offline phase of the algorithm,
we first partition the training set into two sets, train the latent
variable model using the first set, and evaluate and store di
for each genuine user in the second set. Note that the anomaly
score of a test user does not have an absolute meaning; it can
be only understood relative to the scores of genuine (nominal)
users. Then, to compare the anomaly score of each test user
with the nominal baseline from training, we compute the tail
probability (p-value) of each dt in the online test phase:

pt =
1

I

I∑
i=1

1{di>dt}, (20)

which is simply the fraction of the genuine users whose scores
are higher than dt. To convert this probability measure into
a real-valued statistic we next compare the computed p-value
with a statistical significance level such as the commonly used
0.05 in the log scale:

st = log
α

pt
. (21)

Item-based Approach: In this approach, the ratings of test
users are observed on the item basis. The detection task is
performed independently for each item in the system. If an
anomaly is detected for any of the items, a system-wide alarm
is set. In this case, instead of averaging over the items a user
has rated, the negative log-likelihood term `tj for each item is
directly used as an anomaly score, i.e., dtj = `tj . Contrary to
the user-based approach, we only consider the ratings of the
users who rated item j to evaluate the p-value as:

ptj =
1

|Ωj |
∑
i∈Ωj

1{dij≥dtj} (22)

where Ωj is the set of the genuine users who rated item j
assuming the test user t rated the item j. Next, anomaly score
stj for each item user t rates is computed as follows:

stj = log
α

ptj
. (23)
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Note that here we have a separate time index tj for each item
j, which only proceeds when a user rates it, whereas in the
user-based approach, there is only one time detection task with
time index t.

2) Sequential Detector
One can decide if a user or an entry is anomalous by

observing only the attack statistics st or stj , which is rep-
resentative of single-instance outlier detection. However, this
p-value test is known to be prone to high false alarm rates
[52] due to the existence of non-persistent anomalies including
some genuine users rating new items in unexpected ways.
Since attacks typically last for some duration, they correspond
to persistent anomalies. To avoid the false alarms for non-
persistent anomalies, considering the sequential nature of
attacks, we propose a CUSUM-like sequential attack detection
framework based on the derived attack statistic. The aim is
to detect the attacks quickly while keeping the false alarm
rate at an acceptable level. The proposed user-based sequential
detector accumulates the attack statistic as follows:

gt = max{gt−1 + st, 0}, g0 = 0. (24)

If this sequential statistic exceeds a predefined threshold h,
we raise a system-wide alarm at time ta = min{t : gt ≥ h}.
The threshold h is chosen to strike a balance between quick
detection and low false alarm rate. Higher h values enable
lower false alarm rates at the expense of longer detection
delays, and vice versa for lower h values. The complete
algorithm for the user-based sequential attack detector is given
in Algorithm 1 2. The algorithm for the item-based detector
follows the same lines with the following differences. In the
item-based approach, a separate detector is set up for each
item in the system:

gt,j = max{gt−1,j + stj , 0}, g0,j = 0. (25)

If any of the sequential statistics exceeds the threshold, a
system-wide alarm is set at time ta = min{t : maxj gt,j ≥ h}.

3) User Classification
After an alarm is set, the beginning/ending time of the attack

and the suspected profiles are determined. The beginning time
of the attack corresponds to the last time the sequential statistic
was zero before the alarm time, i.e., tb = max{t < ta : gt =
0}. The ending time of the attack corresponds to the first time
when the sequential statistic is zero after the alarm is set, i.e.
te = min{t > ta : gt = 0}. The order in the normal operation
is tb < ta < te. The test users falling into the time interval
[tb, te] are flagged as suspicious. Then individual classification
is performed based on the attack statistics of these users such
that if st > 0, the test user t is flagged as an attacker.

IV. EXPERIMENTAL STUDY

In this section, we first provide the details of the test environ-
ment including the attack generation procedure, the dataset
descriptions, and brief explanation of the baseline algorithms.
We then present experimental results to assess the robustness
of the proposed framework.

2The code can be accessed from https://github.com/maktukmak/
sequential-attack-detector

Algorithm 1: Sequential attack detection in recom-
mender systems (User-based)

Offline Phase;
Inputs: xi,m, yi,n, rij , zj,l, wj,q;
for itertrain := 1 to (itermax or conv) do Train loop

for itervar := 1 to (conv) do Variational loop
Infer user posterior (mui, Σui);
Update variational parameters ψi,n, ei,n, gi,n;

end
for itervar := 1 to (conv) do Variational loop

Infer item posterior (mvj , Σvj);
Update variational parameters ψj,q , ej,q , gj,q;

end
MAP for global variables Wm, Al, Σxm, Σzl;
MLE for global variables Hn, Bq , c;

end
for i := 1 to I do Geniune anomaly score loop

Compute score di;
end
Outputs: {di};
Online Phase;
Inputs: xt,m, yt,n, rtj , {di};
for t := 1 to T do Test loop

Infer user posterior (mut, Σut);
Compute score dt, tail probability pt, statistic st;
Update gt;
if gt ≥ h then

Raise alarm at ta = t;
break;

end
end

A. Test Environment

1) Attack Generation
As discussed in Sec. II-A, different mechanisms have been

used in the literature to generate artificial attack profiles to
show the vulnerability of the existing recommender systems.
Generating an artificial attack profile requires filling the rating
vector intelligently. Since the main motivation is to affect a
target item, a very low or high rating is usually assigned to
this item. However, since all the genuine profiles have sparse
rating vectors, the attacker generally chooses some filler items
and rate them realistically to hide the activity and increase the
impact of attack. The fraction of the number of filler items
to the total number of items in the system, is called the filler
size. Moreover, the attacker has to create multiple profiles as a
single profile is not sufficient to disturb the overall system. The
fraction of the amount of fake profiles injected to the system
to the total number of users already registered, is called the
attack size.

To generate a single attack profile, we utilize several popular
attack types in the literature which differ by item selection,
and ratings given for the filler items and target item (see Sec.
II-A). We can subsequently group them into three categories
as push, nuke and obfuscated attacks. Push attacks are mainly
designed to create a positive prediction shift for a target item
by entering high ratings. In the experiments, we consider
random, average, and bandwagon attacks [12], [13]. Nuke
attacks are conversely designed to create a negative prediction
shift. Here, we implement reverse bandwagon and love-hate

https://github.com/maktukmak/sequential-attack-detector
https://github.com/maktukmak/sequential-attack-detector
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Fig. 3: Characteristics of the two variants of the proposed algorithm
with respect to the varying obfuscation and sparsity.

attacks for this category [17]. Lastly, the obfuscated attacks
are used to hide the intention from the detection algorithms
by changing the filler selection criteria and the ratings given
for them. Popular and average over popular (AOP) attacks are
selected as representatives of this category [18].

The attributes of the attack profiles are chosen randomly
from the pool of genuine user attributes. For each attribute
of an attack profile, a random genuine user is selected and
the corresponding attribute is copied. After all attributes are
generated, a final check is performed to avoid unrealistic com-
binations. For example, in the MovieLens dataset, regardless of
the gender, the following occupations are avoided for the age
group 0-20: academic/educator, executive/managerial, lawyer,
retired, scientist, tradesman/craftsman. Similarly, for the age
group 20-60, K-12 student is not used as occupation.

Another requirement to get quick and efficient results is that
the attack has to be performed in a short time period. We name
this type of attack as sequential attack. To generate a sequential
attack, we generate a number of attack profiles. These profiles
can be generated from either one of the single attack types or
by mixing several of them randomly. In a real-world scenario,
some genuine users may also interleave the attack sequence.
To simulate this scenario, we hold 10% of randomly selected
genuine users from the dataset and train the model with the
rest of the genuine users. A test sequence is formed by mixing
held-out genuine users (90%) and attack profiles (10%).

2) Datasets
We consider three benchmark datasets, MovieLens (1M),

BookCrossing and LastFM, which vary in both dataset size and

concept (movies, books, music), to perform a robustness as-
sessment of the proposed framework. The MovieLens dataset
provides 1M ratings of approximately 4K users on 6K movies.
All the users and the movies have mixed data-type attributes.
Each user has age, gender and occupation information. We
model the age as one dimensional real-valued attribute, the
gender as binary categorical attribute, and the occupation as
21-class categorical attribute. Each item has the release year
and genre information. We consider the release year as one-
dimensional real-valued attribute. The genre information is
provided as 19-dimensional binary vector where each genre
is represented by one bit. Since it is not one-hot encoded, we
model each bit as 2-class categorical attribute. BookCrossing
dataset provides 1.1M ratings of 278K users on 270K books.
Not all users have fully observed attributes thus we filter
out the users with missing attributes. The remaining users
have age and location information. We model the age as one-
dimensional real-valued attribute, and the location as 8-class
categorical attribute as we only consider the English-speaking
countries. We filter the dataset to eliminate the imbalance of
the countries by sampling the users evenly based on their
respective countries, and to decrease the sparsity of the rating
vectors of the users by pruning out the cold users and books
which have very small number of ratings. The resulting dataset
consists of 19K ratings of 5K users on 9K books. LastFM
dataset provides 17M play counts of 360K users on 186K
artists. We filter out the users with missing attributes. The
remaining users have age, gender and country information.
We model the age as one-dimensional real-valued attribute,
the gender as 2-class categorical attribute, and the country
as 10-class categorical attribute because we only consider the
countries with large number of ratings. We further filter the
dataset to decrease the sparsity of the user rating vectors to
eliminate the cold users and play counts with low number of
ratings. The resulting dataset consists of 1.4M ratings of 26K
users on 10K artists. We convert the play counts to integer
pseudo ratings between 1 and 5. We first normalize the play
counts for each user by dividing the individual play counts
by the total play counts of that user. Then, each entry is log-
transformed by using log(pi,j+1), where pi,j is the normalized
play count. Finally, the entries of each user are scaled and
quantized by ensuring the max entry of each user is 5.

3) Baseline algorithms
For performance comparison on sample-by-sample attack

profile detection task, we consider four baseline algorithms.
The first algorithm is a statistical test proposed in [18] called
NP-test, which is based on LLR. The distribution of the
genuine profiles and attack profiles are obtained based on item
selection behavior, which is modeled through item popularity,
and the integer ratings given for these items, which is modeled
through Gaussian Q functions. The LLR value of each test user
performs the classification. The second algorithm uses PCA to
find out a metric associated with user correlations [27]. By as-
suming the attack users are correlated, PCA of the normalized
design matrix is computed to select the least independent users
by choosing the principal components associated with the
smallest eigenvalues. The users are then sorted with a metric
computed through the sum of squared values of a few principal
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Fig. 4: Average AUC scores when mixed push is performed with
different attack configurations to the MovieLens dataset.

components, and the top users are flagged as attack profiles.
The third approach RDMA [22] is a feature-based algorithm
that forms distinctive features for the attack detection based on
the ratings. The deviation of the ratings of each user from the
mean values of the items the user rated is used as an indicator
feature of an attack. The last algorithm called UnRAP [24]
is another feature-based algorithm that uses Hv-score metric
to distinguish genuine and attack profiles. This metric is
computed through the squared deviation of the mean values of
the user, the mean values of the items that the user rated, and
the global mean of the overall rating matrix. As a summary,
we consider the NP algorithm as a statistical test based on the
LLR, PCA algorithm as a latent variable model that performs
deterministic inference for the latent variables, i.e., principal
components, and the RDMDA (2005) and UnRAP (2008) as
two hand-crafted feature-based methods. These algorithms can
cover a broad range of approaches to form the baselines.
For performance comparison on sequential attack detection
task, we consider two baseline algorithms based on CUSUM
framework and originally proposed for the reputation systems.
We call these algorithms as Mean-detector [39] and GLR
[40]. Both estimate unknown distributions of the ratings by
using maximum likelihood estimation. The former assumes a
Gaussian density for pre-post distributions and proposes a two-
sided CUSUM to detect the mean shift of the ratings. The latter
instead assumes a discrete probability model and estimate the
model parameters of the rating samples given categorically
distributed observations. We pick these two algorithms since
there has been no study that analyzes sequential detection

performance in the recommender systems domain, and the
reputation systems are a closely related application domain.
Nonetheless, these algorithms can detect distribution changes
by observing rating sequence of a particular item, hence easily
applicable to the problem at hand.

4) Metrics
We use two metrics to assess the performance of the pro-

posed framework and compare it with the baseline algorithms.
For sample-by-sample profile detection, the problem can be
regarded as binary classification, and one can use Area Under
the Curve (AUC) metric to measure the classification error
of the profiles. It is evaluated as the area of the curve given
the true positive rate against the false positive rate, which
comprises the trade-off while selecting the thresholds. For the
optimal sequential detection scheme, the overall criterion is
to minimize average detection delay while satisfying a lower
bound on the false alarm period [10]. To this end, to assess
the sequential detection performance, we consider the plot of
mean detection delay (MDD) against the log of a given false
alarm period. The MDD is given as the average running length
of the detector after the attack occurs. The lower values are
better since we expect to detect the attack and raise an alarm
as soon as it starts. False alarm period is the average period
that the first false alarm occurs, i.e., the average time that the
detection procedure stops when the past sequence is nominal.
It is computed as the reciprocal of the average false alarm
rate at a fixed detector threshold h. As a result, this plot
demonstrates the trade-off for choosing the threshold. A lower
threshold decreases the detection delay but could increase the
false alarm rate, and vice versa.

B. Robustness Assessment

In this section, we first evaluate the performance characteristics
of the two variants of the proposed framework with respect to
the obfuscation level and dataset sparsity. Then we change the
attack configuration, i.e, the filler size and the attack size, and
do performance comparison with the baseline algorithms.

1) Obfuscation and sparsity level
To show the sensitivity of the variants with respect to the

obfuscation level, we pick the AOP attack and change the
fraction of popularity, i.e., the portion of the item set sorted
based on popularity, while fixing the attack size as %5 and
filler size as the dataset average, which is the average number
of items genuine users in the system have rated. At each
fraction, 100 different realizations of the attack profiles are
generated. In each realization, the target item and the held
out users are randomly selected among the pool of the items
and the users in the dataset. Fig. 3a indicates the comparison
of the performances. The observation is that the user-based
method fails when the attack is obfuscated by selecting the
most popular items as filler although the item-based method
provides a robust performance in this test condition. The
reason is that while the user-based method aggregates the
rating likelihoods of a test user, the item-based method uses
only the rating likelihood of the target item. If the filler items
are chosen and rated among the popular items, the likelihoods
become nominal for the filler items. Hence, the nominal
likelihoods of popular filler items suppresses the single target
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Fig. 5: Average AUC scores when mixed push/nuke/obfuscated attacks are performed with different attack configurations, i.e, filler and attack
size) to the three different datasets. Proposed algorithms provide stable and accurate results among different conditions.

item, and thus the user-based method tends to produce nominal
anomaly scores, which reduces its detection performance. Note
that the performances of other baseline algorithms also suffer
when obfuscation exists. Indeed, the only method that exhibits
stable performance throughout the range is the item-based
method.

To show the sensitivity of the variants with respect to the
dataset sparsity, we conduct experiments by varying the spar-
sity (conversely the density) of the MovieLens dataset by hold-
ing out randomly selected rating entries while keeping the filler
and attack size configuration. In this setting, we design push
attacks by evenly mixing random, average, and bandwagon
attack types while generating fake profiles. The observation
from Fig. 3b is that although both of the proposed variants
provide reasonable performances among different sparsity
conditions, the user-based method slightly degrades at high
sparsity and the item-based method slightly degrades at low
sparsity. The key reason is that rating prediction performance
of the latent variable model defined in Section III-A relies
on the number of observed ratings provided for the training.
As the sparsity increases, the mean square error of the model
increases, which results in noisy rating likelihoods. Summing
up the noisy likelihoods results in more noisy anomaly scores
than using only a single likelihood as in the case of the item-
based method. On the other hand, the other baseline algorithms
exhibits more significant performance degradation than the
proposed methods when sparsity increases.

2) Attack configuration
We now pick the user-based method and compare it with

the baseline algorithms to assess the robustness by changing
the attack configuration, i.e, filler size and attack size. The
filler size is a parameter for the attacker that is adjusted based
on the purpose and the knowledge at hand. Hence, the attack
detection performance should be robust to this possibility of
varying fractions of filler items. We design an experiment to
show the performances of the sample-by-sample attack profile
detection algorithms with respect to varying fractions of filler
items. We repeat 100 experiments by generating mixed push
attacks, i.e., evenly distributed mixtures of random, average,
and bandwagon attack types, of size 5% with a 10% hold-
out set and running the algorithms on Movielens. We used
a uniformly distributed average filler size in the range of
1% to 11% to place the average filler size of the dataset

TABLE I: Standardized partial AUC values bounded at %0.1 and %1
FPR. Note that under .50 means no detection at that rate.

0.1% 1%
Push Nuke Obf. Push Nuke Obf.

Movielens
User-based .68±.08 .79±.05 .62±.04 .94±.02 .97±.01 .75±.01
Item-based .59±.09 .50±.01 .74±.01 .91±.01 .89±.03 .90±.02
NP .50±.00 .50±.00 .50±.00 .82±.07 .81±.08 .47±.00
PCA .77±.16 .76±.01 .50±.00 .84±.15 .81±.11 .47±.00
RDMA .56±.08 .52±.00 .50±.04 .84±.12 .71±.15 .47±.00
UNRAP .76±.10 .75±.09 .50±.00 .90±.08 .85±.11 .47±.00
LastFM
User-based .80±.02 .83±.01 .62±.03 .98±.01 .99±.01 .75±.02
Item-based .61±.05 .63±.06 .68±.03 .87±.04 .85±.04 .88±.01
NP .69±.02 .67±.02 .58±.04 .95±.01 .95±.01 .84±.01
PCA .50±.00 .50±.00 .50±.00 .47±.00 .47±.00 .47±.00
RDMA .63±.01 .72±.02 .50±.00 .74±.01 .77±.01 .47±.00
UNRAP .50±.00 .50±.00 .50±.00 .47±.00 .47±.00 .47±.00
Book
User-based .50±.00 .50±.00 .56±.04 .48±.00 .48±.00 .71±.01
Item-based .84±.07 .86±.01 .87±.08 .98±.01 .99±.00 .99±.01
NP .50±.00 .50±.00 .50±.00 .48±.00 .48±.00 .47±.00
PCA .50±.00 .50±.00 .50±.00 .47±.00 .47±.00 .47±.00
RDMA .50±.00 .50±.00 .50±.00 .48±.00 .47±.00 .50±.01
UNRAP .50±.00 .50±.00 .50±.00 .47±.00 .47±.00 .47±.00

(∼6%) in the middle of the distribution. Fig. 4a shows the
average AUC values of the algorithms in this setup. The results
indicate that the proposed user-based algorithm is robust to
the variations in filler size while the baseline algorithms have
varying or lower performances. Item-based method shows
stable performance over the range although it is slightly lower
than the performances of other algorithms in this setting.

Similar to the filler size, the attack detection algorithm
should be robust to varying attack sizes. To assess their
performances, we perform an experiment where we change the
attack size fraction from 3% to 18% while fixing the hold-out
set at 10% and evaluate mean AUC in the case of a mixed
push attack with a filler size of 6%. Fig. 4b shows the average
results of 100 experiments. Similar to the experiments for the
filler size, the results demonstrate the robustness of the user-
based method for different attack sizes, and lower but stable
performance of item-based method.

C. Attack detection performance

This section presents the overall performance evaluation in
classification of the test user profiles as attacker or genuine.
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Fig. 6: Sequential detection performance when mixed push/nuke/obfuscated attacks are performed to the three different datasets. User-based
method outperforms in the case of push/nuke attacks. Item-based method outperforms in the case of obfuscated attacks.

To get the average performances, we integrate out the attack
and filler size by forming a 2d-grid. For the attack size, 10
equally spaced grid points are determined between the range
of 3% to 10% of the total amount of users in each dataset.
For the filler size, the average filler size of the dataset is first
computed as f̄s, and then the respective range for each dataset
is defined as 0.5f̄s% to 1.5f̄s% with 10 equally spaced grid
points. 100 experiments are repeated with a randomly selected
10% hold-out set. We conduct experiments by using three
different attack type settings such as mixed push (random,
average, bandwagon), mixed nuke (reverse bandwagon, love-
hate), and mixed obfuscation (popular, average over popular).
The mixing is performed randomly with even probabilities
for each profile. The resulting mean AUCs are presented in
Fig. 5 for each dataset and each mixed attack type separately.
We also report standardized partial AUC values at bounded
false positive rates 1% and 0.1% in Table I. The results
indicate that the two variants of the proposed framework
provide consistently and exchangeably superior performance
over other algorithms for all test conditions and datasets. The
overall results are summarized as follows:

• The competing algorithms fail especially when the spar-
sity is very high as in BookCrossing dataset. PCA algo-
rithm fails because the filler size is very low in the case of
sparse datasets, which increases the correlation between
all possible user profiles. NP fails as the histogram of
item ratings gets broader, i.e., the distribution lacks sharp
modes, which is the information NP relies upon. The
performances of RDMA and UnRAP degrade due to the
fact that the item means are noisy as the number of ratings
per item is very low. Item-based method gives the best
performance in this low sparse setting.

• The obfuscated attack drastically degrades the perfor-

TABLE II: Test setup

Dataset Attack Pre-distribution Post-distribution
P [.06 .16 .39 .31 .07] [.05 .10 .10 .35 .45]

MovieLens N [.01 .02 .19 .41 .37] [.45 .35 .10 .10 .05]
O [.32 .19 .30 .16 .04] [.05 .10 .10 .35 .45]
P [.85 .13 .02 .01 .01] [.05 .05 .30 .30 .30]

LastFM N [.18 .45 .09 .18 .09] [.45 .35 .10 .10 .05]
O [.54 .32 .07 .05 .02] [.05 .05 .30 .30 .30]

mances of the baseline algorithms. For both Movielens
and LastFM datasets, the item-based method provides
most acceptable performance for this attack type. PCA
fails because the correlation between the genuine and at-
tack user rating vectors becomes higher in the obfuscated
attack. RDMA and UnRAP fail since the attack type has
knowledge of both the item means and the filler selection
propensity of the genuine users. Among them, only NP
algorithm performs reasonably well on LastFM dataset.

• In the rest of the cases, in which push and nuke attacks
are injected to MovieLens and LastFM datasets, all
algorithms detects fairly well. We can observe that user-
based method performs better than the rest of the algo-
rithms. Note that the detection rate of baseline algorithms
significantly reduces at bounded false positive rates.

D. Sequential detection performance

We now focus on the performance of sequential attack de-
tection. In this case, the baseline algorithms are GLR and
Mean-detector. Note that these algorithms only observe the
rating sequence of a single test item and detect the changes
in distribution parameters. To infer the parameters by using
MLE, a long rating sequence for each item is necessary to get
reasonable performance. Unfortunately, due to high sparsity
of its rating matrix, BookCrossing dataset does not provide
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a sufficient number of ratings for almost any of the items
it contains. To this end, we exclude it and use MovieLens
and LastFM datasets to achieve a fair comparison. The test
conditions are designed to provide distribution changes before
and after the attack occurs. We consider mixed push, mixed
nuke and mixed obfuscated attacks, respectively. Although
these attacks are designed to provide highest (5) or lowest
(1) ratings to the target item, we modify the attacks to
enable categorical distributions. We set the probabilities of
the distributions after the attack occurs and then generate
independent samples. Table II shows the parameters before
and after the attack in this setup. We fix the filler size to the
average sparsity of each respective dataset f̄s, the hold-out size
as 10%, and the attack size as 5%. Fig. 6 shows the sequential
detection performances over 500 repetitions as MDD versus
the false alarm period plots. The results show that two variants
of the proposed framework provide superior performance over
the range of different distribution changes as compared to the
baseline algorithms. In particular, for both datasets, when push
and nuke attacks are applied, the user-based method performs
quicker detection than other two algorithms to ensure fixed
false alarm rates. We also observe that Mean-detector performs
slightly better than GLR in most conditions. In the case of
obfuscation, the item-based method is robust and provides
better performance than other algorithms on both datasets.
The experimental results demonstrate that both variants of the
proposed framework can effectively exploit the user attributes
as an informative additional anomaly data source and clearly
outperform the competing algorithm for a variety of scenarios.

V. CONCLUSION

In this paper, we address the problem of sequential at-
tack detection in recommender systems. The proposed semi-
supervised framework requires no a priori knowledge of the
attacking strategies for ultimate flexibility and robustness com-
pared to alternative approaches. The latent variable model in
the proposed framework provides a rich latent space, in which
the users are represented by real valued latent variables given
their sparse rating vectors and the mixed-data type attributes.
Producing attack statistics from this space to be accumulated
in a CUSUM-like algorithm, our sequential detector provides
a robust detection performance by aggregating the anomalies
coming from the mismatch between the ratings and the at-
tributes for a wide range of attack types, sizes and datasets.
The experimental study shows clear advantages of the two
variants of our detector (user- and item-based) on varying
attacking strategies and configurations on three popular real-
word datasets with different characteristics and statistics. In
summary, the proposed framework provides higher accuracy
and quicker detection over the competing methods in detecting
anomalous activity in recommender systems.

APPENDIX A
VARIATIONAL INFERENCE OF LATENT VARIABLE MODEL

We resort to deterministic approximate inference method [53]
to optimize the proposed latent variable model. Particularly,
denoting the exact posterior as p∗(U ,V |D), where U =
{ui}1:I , V = {vj}1:J and D = {xi,m, zj,l,yi,n,wj,q, rij},

we approximate the posterior as q(U ,V ), and try to minimize
reverse KL-divergence, minq KL(q(U ,V |D) || p∗(U ,V )),
as the cost function while using the mean-field factorization
approximation to the posterior given as

q(U ,V ) =
∏
i

qi(ui)
∏
j

qj(vj),

and Gaussian approximation for each latent variable given as
qi(ui) = N (ui|mui,Σui) and qj(vj) = N (vj |mvj ,Σvj).
We want to optimize the free parameters of the distributions
{mui,Σui,mvj ,Σvj}. Instead of using the normalized pos-
terior p∗, one can use unnormalized posterior, i.e., the joint
likelihood p, to obtain an upper bound to the negative log
marginal likelihood as

L(q) = KL(q || p) = KL(q || p∗)− log p(D).

Minimizing L(q) leads q to be close to normalized posterior p∗

since the log marginal data likelihood is constant. It is tractable
to compute the log joint likelihood log p(D,U ,V ,W ,A|Θ)
of the proposed model as follows:

=

M∑
m=1

[ I∑
i=1

log p(xi,m|ui,Wm,Σxm) + log p(Wm,Σxm)
]

+

L∑
l=1

[ J∑
j=1

log p(zj,l|vj ,Al,Σzl) + log p(Al,Σzl)
]

+

N∑
n=1

I∑
i=1

log p(yi,n|ui,Hn) +

Q∑
q=1

J∑
j=1

log p(wj,q|vj ,Bq)

+

I∑
i=1

log p(ui) +

J∑
j=1

log p(vj) +

I∑
i=1

J∑
j=1

log p(rij |ui,vj).

Particularly, the terms in above expression excluding constants
are given below, for user latent variable prior log p(ui) as

= −1

2
log |λ−1

u IK | −
λu
2
uT
i ui,

for real-valued user attributes log p(xi,m|ui,Wm,Σxm) as

= −1

2
log |Σxm| −

1

2
(xi,m −Wmui)Σ

−1
xm(xi,m −Wmui)

T ,

for factor loading matrix prior log p(Wm,d, σ
2
xm,d) as

= −1

2
W T

m,d(diag(α)σ−2
xm,d)Wm,d + (a− 1) log σ−2

xm,d

− bσ−2
xm,d,

for discrete user attributes log p(yi,n|ui,Hn) as

= yT
i,nηC,in − lse(ηC,in))

≥ yT
i,nηC,in −

1

2
ηT
C,inFu,nηC,in + gTi,nηC,in − ei,n

≥ yT
i,nHnui + gTi,nHnui − ei,n −

1

2
Hnu

T
i Fu,nHnui,

and for the rating conditional log p(rij |ui,vj) as

= −1

2
log c− c

2
(rij − uT

i vj).
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We then infer the parameters of the approximate posteriors in
the E-step of the variational inference algorithm. To do that,
by exploiting the “complete the square” approach for linear
Gaussian systems, we first collect the terms that depend on
− 1

2uiu
T
i and sum them up to obtain posterior covariance Σ−1

ui

for user i, which is given in Eq. (11). Then, the terms that
depend on ui are collected, summed up, and multiplied with
posterior covariance to obtain mean as given in Eq. (12). In the
M-step of the algorithm, we integrate out the latent variables
U and V , then perform maximum likelihood estimation
for {Hn,Bq, c} and maximum a posteriori estimation for
{Wm,Al}. To do that we first plug in the expectations of
the user and item latent variables, i.e., for ui →E[ui] and
for uiu

T
i →E[uiu

T
i ], and then take the derivative of the joint

log likelihood with respect to the parameter that we want to
estimate and setting it to zero. To avoid clutter, we only give
the related terms with the considered parameter. Particularly,
the derivatives are given below for the factor loading matrix
Wm of real-valued attribute m as

∂

∂Wm

∑
i

Eqi(ui)

[
− 1

2
W T

m(diag(α)Σ−1
xm)Wm

− 1

2
(xi,m −Wmui)Σ

−1
xm(xi,m −Wmui)

T
]
,

for factor loading matrix Hn of categorical attribute n as,

∂

∂Hn

∑
i

Eqi(ui)

[
yT
i,nHnui + gTi,nHnui

− 1

2
Hnu

T
i Fu,nHnui

]
,

for noise covariance matrix Σxm of attribute m as,

∂

∂σ2
xm,d

[
− 1

2
log σ−xm,d

1

2
W T

m,d(diag(α)σ−2
xm,d)Wm,d∑

i

Eqi(ui)

[
− 1

2
(xi,m −Wmui)Σ

−1
xm(xi,m −Wmui)

]
+ (a− 1) log σ−2

xm,d − σ
−2
xm,db

]
,

and finally for precision c of the rating latent variables as

∂

∂c

∑
i,j

Eqi(ui),qj(vj)

[
− 1

2
log c− c

2
(rij − uT

i vj)
]
.

APPENDIX B
CLOSED FORM EXPRESSION OF RATING LIKELIHOOD

Using the fact that inner product can be written as

r̂ij = uT
i vj =

K∑
a=1

uiavja,

and defining p(uia) = N (µu,ia, σu,ia) and p(vja) =
N (µv,ja, σv,ja), one can compute the variance of the product
of two univariate Gaussian random variables as:

σ2
ra = (σ2

u,ia + µ2
u,ia)(σ2

v,ja + µ2
v,ja)− µ2

u,iaµ
2
v,ja

and the mean as µra = µu,iaµv,ja. Next, the expected squared
error is given as

E[(r̂ij − rij)2] = E[r̂2
ij ]− 2E[r̂ij ]rij + r2

ij

=

K∑
a=1

[σ2
ra + µ2

ra − 2µrarij ] + r2
ij

Since the precision of the ratings c is modeled as fixed un-
known, the rating likelihood is equal to the negative expected
squared error plus a constant term.
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[36] G. Rätsch, S. Mika, B. Schölkopf, and K. R. Müller, “Constructing
boosting algorithms from SVMs: An application to one-class classifica-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 9, pp. 1184–1199, 2002.

[37] M. Wu and J. Ye, “A small sphere and large margin approach for
novelty detection using training data with outliers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2088–
2092, 2009.

[38] H. Chen, “Sequential change-point detection based on nearest neigh-
bors,” Annals of Statistics, vol. 47, no. 3, pp. 1381–1407, 2019.

[39] Y. Liu and Y. L. Sun, “Anomaly Detection in Feedback-based Reputa-
tion Systems through Temporal and Correlation Analysis,” 2010 IEEE
Second International Conference on Social Computing, pp. 65–72, 2010.

[40] S. Li and X. Wang, “Quickest attack detection in multi-agent reputation
systems,” IEEE Journal on Selected Topics in Signal Processing, vol. 8,
no. 4, pp. 653–666, 2014.

[41] M. Aktukmak, Y. Yilmaz, and I. Uysal, “A probabilistic framework to in-
corporate mixed-data type features: Matrix factorization with multimodal
side information,” Neurocomputing, vol. 367, pp. 164 – 175, 2019.

[42] Z. Ghahramani, G. E. Hinton et al., “The em algorithm for mixtures of
factor analyzers,” Tech. Rep. CRG-TR-96-1, 1996.

[43] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[44] M. E. Khan, G. Bouchard, K. P. Murphy, and B. M. Marlin, “Varia-
tional bounds for mixed-data factor analysis,” in Advances in Neural
Information Processing Systems, 2010, pp. 1108–1116.

[45] A. Ilin and T. Raiko, “Practical approaches to principal component
analysis in the presence of missing values,” Journal of Machine Learning
Research, vol. 11, no. Jul, pp. 1957–2000, 2010.

[46] A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,”
in Advances in neural information processing systems, 2008, pp. 1257–
1264.

[47] C. C. Johnson, “Logistic matrix factorization for implicit feedback data,”
in Advances in neural information processing systems, vol. 27, 2014.

[48] P. Gopalan, F. J. Ruiz, R. Ranganath, and D. Blei, “Bayesian nonpara-
metric poisson factorization for recommendation systems,” in Artificial
Intelligence and Statistics, 2014, pp. 275–283.

[49] A. W. Van der Vaart, Asymptotic statistics. Cambridge university press,
2000, vol. 3.
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