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Abstract

Weakly supervised video anomaly detection is an impor-
tant problem in many real-world applications where during
training there are some anomalous videos, in addition to
nominal videos, without labelled frames to indicate when
the anomaly happens. State-of-the-art methods in this do-
main typically focus on offline anomaly detection without
any concern for real-time detection. Most of these methods
rely on ad hoc feature aggregation techniques and the use of
metric learning losses, which limit the ability of the models
to detect anomalies in real-time. In line with the premise
of deep neural networks, there also has been a growing
interest in developing end-to-end approaches that can au-
tomatically learn effective features directly from the raw
data. We propose the first real-time and end-to-end trained
algorithm for weakly supervised video anomaly detection.
Our training procedure builds upon recent action recogni-
tion literature and trains a large video model to learn visual
features. This is in contrast to existing approaches which
largely depend on pre-trained feature extractors. The pro-
posed method significantly improves the anomaly detection
speed and AUC performance compared to the existing meth-
ods. Specifically, on the UCF-Crime dataset, our method
achieves 86.94% AUC with a decision period of 6.4 sec-
onds while the competing methods achieve at most 85.92%
AUC with a decision period of 273 seconds.

1. Introduction
This paper investigates the effectiveness of end-to-end

training for real-time weakly supervised video anomaly
detection (wVAD). As opposed to the unsupervised VAD
problem [15], in which only nominal videos are used in
training, anomalous videos with video-level labels are also
available for training in wVAD [16]. The lack of frame-
level anomaly labels differentiates wVAD from supervised
VAD. Recent wVAD approaches extract features from a
video using large pre-trained video models and process
them using elaborate deep neural networks [10], [17], [19],
[6]. These feature aggregation networks are trained together

Figure 1. Performance drop in state-of-the-art methods with de-
creasing decision period. The proposed method (shown with star)
significantly improves timely detection performance with 86.94%
AUC and 6.4 sec decision period.

with a shallow model using a deep metric learning loss, such
as the multiple-instance learning (MIL) loss [16] to detect
anomalous events. These models process a full video to-
gether during inference to refine the features across the en-
tirety of the video. Hence, they focus on offline anomaly de-
tection after observing the entire video with decision period
typically being equal to the video length. Figure 1 shows
the impact of reducing the decision period during inference
on three recent state-of-the-art methods [17], [19], [6] on
the UCF-Crime dataset [16]. Results indicate that the per-
formance of state-of-the-art models is proportional to the
number frames processed at a time, with significantly re-
duced performance for real-time or near-real-time perfor-
mance as shown by the dashed rectangle in Figure 1 1. In
this paper, we show that a much improved real-time detec-
tion performance is possible (shown by star in Figure 1.)

An important premise of video anomaly detection in
many applications, including video surveillance, is real-
time or near-real-time detection to enable timely response.
This poses a question: Can wVAD models be trained with a

1While the notion of real-time decision heavily depends on the appli-
cation, we consider less than 30 sec to be real-time or near-real-time for
video anomaly detection.
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Figure 2. Proposed approach simplifies and outperforms the pop-
ular wVAD approaches which only train the feature encoder and
classifier networks in an ad hoc manner. End-to-end training of
feature extractor in our approach provides compactness and supe-
rior real-time performance.

short decision period to enable real-time inference?
In this paper, we show that the answer to this question is

positive through end-to-end training of modern transformer-
based models using a novel self-supervised learning net-
work based on kNN (k-nearest-neighbors) distances and
uniform frame sampling. We show that using a decision
period of 6.4 seconds the proposed method, called RE-
WARD, outperforms state-of-the-art methods which use de-
cision periods 43 times ours.

End-to-end training is not feasible with the existing
wVAD methods since the commonly used metric learn-
ing losses require uploading two batches of nominal and
anomalous videos in a single GPU together. The batch sizes
necessary for gradient estimates of sufficient quality cause a
memory bottleneck problem. Hence, as summarized in Fig-
ure 2, the existing methods limit the training to the feature
encoder for feature refinement and do not train the feature
extractor, which is typically pre-trained on a large action
recognition dataset, such as Kinetics-600.

In the proposed method, the end-to-end trained video
model is directly used for inference, greatly simplifying the
wVAD pipeline, as shown in Figure 2. Our contributions
can be summarized as follows:

• We introduce a novel end-to-end solution, called RE-
WARD, for wVAD systems.

• It enables real-time anomaly detection on test videos
with 6.4 sec decision period.

• It outperforms state-of-the-art methods which use 273
sec decision period on popular wVAD datasets such as
UCF-Crime and XD-Violence.

2. Related Work

Video Anomaly Detection: The motivation for wVAD
is that in some applications it may be possible to roughly
label videos as anomalous, without specifying where and
when the anomaly happens, to obtain a representative set of
anomalies of interest.

Sultani et al. [16] first introduced a deep MIL ranking
loss framework to detect anomalous segments. MIST [10]
used an encoder-based method that fine-tunes a feature en-
coder based on the generated pseudo-labels. RTFM [17]
uses feature magnitude with the multi-scale temporal sce-
nario from the video to select the top-k segments to deter-
mine the abnormality of a segment in a video. This paper
also introduced the first feature aggregation MTN network.
MTN has since been a staple backbone for current research.
S3R [19] uses dictionary-based self-supervised learning to
generate en-normal and de-normal features, which also uses
the MTN network [17] to retrieve enhanced features to cre-
ate pseudo-anomaly video features. MGFN [6] introduces
a Glance-and-Focus module along with Magnitude Con-
trastive loss to increase the separability of normal and ab-
normal features.

There has been some works on real-time anomaly de-
tection in an unsupervised setting [8, 9]. However, in the
wVAD setting, the focus has been on offline anomaly de-
tection. Recent works share the popular pipeline which can
be summarized as in Figure 2. We propose an end-to-end
trained method that outperforms existing methods in real-
time detection while providing a more computationally ef-
ficient solution to the wVAD problem.

Feature Extractors: Deep neural networks have made
substantial progress in action recognition and feature ex-
traction from videos. Two main categories of these models
are 3D convolutional neural networks (3D-CNN) and more
recent Transformer models. 3D-CNNs leverage 3D con-
volution to capture spatial and temporal information. No-
table examples of 3D-CNNs include C3D [18] and I3D [5],
which extract video features effectively. The former em-
ploys both RGB images and optical flow in two-stream net-
works, while the latter uses raw video frames directly, oper-
ating as a 3D network. wVAD literature has predominantly
focused on utilizing I3D as a feature extractor.

Transformer-based video models, such as TimeSformer
[2], Video Swin Transformer [13], ViViT [1], and Uni-
former [12] have shown significant improvement in video
understanding. While TimeSformer is a completely
attention-based model, Uniformer combines attention and
convolution to further improve video understanding. Re-
cently, we also see the use of transformer-based models in
wVAD research, such as MGFN [6], which reports results
using a Swin Transformer [13] model as a feature extractor.
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Figure 3. Self-supervised structure of REWARD.

3. Proposed Method

For end-to-end training large video models on wVAD
data, we propose a self-supervised learning method called
REWARD (Real-Time End-to-End Weakly Supervised
Video Anomaly Relevance Detector). As illustrated in Fig-
ure 3, it consists of incremental training of a stronger clas-
sifier with the help of a weaker classifier in three steps. In
the first step, a kNN classifier network is trained on features
from a pretrained video model. In the second step, the pre-
dicted anomalous frame indexes from the first step are used
to train a Multi-Layer Perceptron (MLP) classifier and in
the final step, the raw video frames of anomalous frame in-
dexes predicted by MLP are used to end-to-end train a large
video model such as a Transformer. Before explaining the
details of REWARD, we first discuss the background and
motivation.

3.1. Motivation

End-to-End Training refers to the process of training all
the neural network parts together to perform a task directly
from the raw input to the final output, without any interme-
diate, separately trained feature refinement steps. This ap-
proach can bring about significant advantages. It can sim-
plify the overall machine learning pipeline by eliminating
the need for feature refinement. Moreover, it can lead to
better real-time performance as the model can learn task-
specific representations directly from the raw input data
without the need for feature aggregation. It has been applied
successfully in various domains, including computer vision,
natural language processing, and speech recognition [3, 7].

Memory Bottleneck of Metric Learning Loss: Metric
learning losses are a family of loss functions used in ma-
chine learning in cases where the output labels for train-
ing instances are not sufficient for the use of loss functions
used in supervised learning, such as binary cross entropy
and mean squared error [11]. These losses are specifically
designed to learn a metric space, where distances between
samples in the learned space correspond to their semantic
dissimilarity. The aim of metric learning losses is to min-
imize the distance between samples of the same class and
maximize the distance between samples of different classes,

Figure 4. To train the feature encoder and classifier using a met-
ric learning loss, Fn and Fa are processed together to promote the
separability between normal and anomalous segments. Neverthe-
less, training a feature extractor end-to-end using a metric learn-
ing loss is not feasible due to two reasons: processing together
large number of video clips in a single GPU entails huge memory
requirements and feature extractor has orders of magnitude more
parameters than feature encoder.

thereby improving the quality of features.
In recent works, MIL ranking loss, a metric learning loss,

has played a key role in wVAD systems [16]. This loss
function has a requirement that is impracticable for end-to-
end training of feature extractors in a wVAD setting (Figure
4). MIL loss requires an equal number of anomaly videos
and nominal videos to be trained together at once.

In the existing works utilizing metric learning loss, while
training only the feature encoder and classifier with multiple
bags of anomalous and normal features together is feasible
on a single processing unit, training the feature extractor
end-to-end using a metric learning loss would require raw
video clips to be processed together (Figure 4). This is in-
feasible because the memory requirement of processing a
large number of raw video clips at once is inordinate. More-
over, the number of trainable parameters in feature extractor
is orders of magnitude higher than that of feature encoder.

3.2. End-to-End Training via REWARD

We propose a solution to the memory bottleneck prob-
lem by converting the wVAD problem with video-level la-
bels into a classification problem with frame-level pseudo-
labels. Specifically, we generate segment-level pseudo-
labels and replace metric learning loss functions with the
more memory-friendly loss functions such as BCE (binary
cross entropy).

To find the anomalous segments and perform end-to-end
training, we propose the REWARD network with architec-
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Figure 5. Proposed REWARD network for self-supervised end-to-end training of large video models in wVAD problems.

ture shown in Figure 5. It consists five types of modules:
kNN distance calculation, smoothing, selection, multi-layer
perceptron (MLP), and a large video model for feature ex-
traction and classification.

We first divide each video into T segments by uniformly
sampling at a rate of 5 frames/sec and extract features using
a pretrained feature extractor to get feature representations
for nominal and anomalous videos as Fn ∈ RT×P and Fa ∈
RT×P respectively, where P is the dimension of the feature
vector. All features from nominal and anomalous videos are
collected into the sets

Fn = {F i
n}

NnT
i=1 , Fa = {F t

aj}
Na,T
j=1,t=1,

where Nn and Na are the numbers of nominal and anoma-
lous videos in the training set, and j denotes the anomalous
video index.

Distance Calculation: The distance calculation module
consists of four layers. In the distance layer, each segment
F t
aj , t = 1, . . . , T, in an anomalous video is compared to

Fn by computing the Euclidean distance δti between F t
a

and all F i
n ∈ Fn, yielding a T ×N distance matrix

∆ = [δti]
T,N
t=1,i=1,

which integrates the temporal information in the anomalous
video. Then, in the sorting layer, the N distances [δti]Nt,i=1

in each row t of ∆ are sorted in the ascending order. Finally,
an average pooling layer is applied to each row only by tak-
ing the average of the first k elements (i.e., distances to the
nearest k neighbors), resulting in the T -dimensional kNN

distance vector δt. Each kNN distance δt gives us an esti-
mate of the similarity of each segment t within an anomaly
video to the nominal segments. Small values of δt mean a
higher degree of similarity to normal action and vice-versa.

Smoothing: Considering the temporal continuity of ac-
tions in video, a smoothing step is applied to avoid spuri-
ous dissimilarities. We first normalize the distance values
around zero by subtracting the average value

δ̃t = δt −
1

T

T∑
t=1

δt, (1)

and then apply the cumulative sum operation followed by
the ReLU activation function in a recurrent way to compute
the anomaly evidence for each segment:

Dt = max{0, Dt−1 + δ̃t}, D0 = 0. (2)

Initial Selection: After smoothing, the anomaly evi-
dence time series Dt takes values around zero for segments
similar to the nominal segments and positive values for seg-
ments not so similar to the nominal ones. Since it is known
that some segment(s) in each anomalous video are anoma-
lous, the ones with largest Dt values are good candidates.
We select a small percentage of segments by focusing on
the segments with largest anomaly evidence Dt. After nor-
malizing Dt by its largest value,

D̃t =
Dt

maxt Dt
∈ [0, 1], (3)
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we pick the segments with normalized evidence greater than
λ ∈ (0.5, 1) as an initial anomalous set:

Ij1 = {t : D̃t ≥ λ, t = 1, . . . , T}, (4)

where λ is a threshold close to 1 (e.g., 0.8 used in the exper-
iments) and j denotes the anomalous video index. Combin-
ing the initial sets from all anomalous videos we form the
set I1 =

⋃M
j=1 I

j
1 , where

⋃
denotes the union of sets and

M is the number of anomalous videos.
MLP and Final Selection: To generalize the selection of

anomalous segments for the entire video, we train an MLP
using the segments with strong anomaly evidence in the ini-
tial selection set I1 as label 1 and nominal segments as la-
bel 0. Once the MLP is trained using BCE loss, all the
segments in the anomalous videos are passed through the
trained MLP to estimate their probability of being anoma-
lous, pt, t = 1, . . . , T for each anomalous video. Then, a
final smoothing and selection procedure is applied for each
anomaly video. Using Eq. (1), pt is normalized to the zero-
mean p̃t. Then, its rectified cumulative sum Rt is obtained
using Eq. (2). Finally, the normalized version R̃t of Rt (Eq.
(3)) is used to make the final selections. Since the anomaly
scores in R̃t are more reliable than the evidences D̃t in the
initial selection module thanks to the trained MLP classifier,
we use a lower threshold here, the average value of R̃t:

Ij2 = {t : R̃t ≥ R̄, t = 1, . . . , T}, R̄ =
1

T

T∑
t=1

R̃t

I2 =

M⋃
j=1

Ij2 . (5)

End-to-End Training: With the pseudo-labelled set I2
of anomalous segments available, we can now turn the
wVAD task into a binary classification problem which lends
itself to end-to-end training of the feature extractor. By
labeling the video segments Va(I2) as 1 and the nominal
video segments Vn as 0, we train a feature extractor in an
end-to-end fashion using the BCE loss. We use a single
neuron with the logistic sigmoid activation function at the
classification layer to compute the anomaly relevance prob-
ability.

Real-Time Inference: After training, the feature extrac-
tor with the single-neuron classifier is used in an online
fashion with a small decision period (6.4 sec) for real-time
inference (see Figure 2). The details of real-time inference
and computational efficiency can be found in Sections 3.3
and 4.4.

3.3. Implementation Details

Since we do not use feature aggregation, instead of I3D,
we used a more modern transformer-based feature extrac-
tor in the experiments, Uniformer-32, that can benefit from

end-to-end training. In recent works, consecutive 16 frames
are sampled, and the features are extracted using the I3D
feature extractor. We also sample consecutive 32-frame
segments for the state-of-the-art methods to obtain results
with the new Uniformer features for a fair comparison.
Then, during training, each video is condensed into 32
segments through linear interpolation. In testing, existing
methods can produce an anomaly score for each individual
16-frame segment, but effective feature aggregation (e.g.,
MTN [6,17,19]) requires all or most segments to be passed
together at once. The significant drop in the detection per-
formance with smaller number of segments for inference
(i.e., decision period) is shown in Figure 1.

To address this, we first uniformly sample each video at
5 frames/sec. Leveraging Uniformer-32, which require an
input of 32 frames, a mere 6.4 seconds suffice to accumulate
32 frames, yielding a 6.4-second contextual scope. We set
the number of neighbors as k = 20, and the initial selection
threshold as λ = 0.80. When training the MLP, which con-
sists of 2 hidden layers each with 1000 neurons, we set the
learning rate as 5e−5 with a weight decay of 0.001. Adam
optimizer is used for training all networks.

During the calculation of Dt using kNN distances (Eq.
(2)), we observed that a considerable number of anomaly
training videos in the UCF-Crime dataset exhibit banners
(Figure 6). Typically, these banners appear at the start or
end of a video and are static images. In comparison to
the nominal video data, banners are relatively uncommon,
which leads to the feature representations Fa for such seg-
ments being markedly distinct when compared to the nom-
inal feature set Fn. Consequently, this produces anoma-
lously high Dt scores.

Figure 6. Examples of banners and its effect on Dt.

To mitigate this problem we drop the first and last 20%
of total segments from all anomaly videos in the training
set for UCF-Crime. Note that this is done during self-
supervision in training to identify an initial set of anoma-
lous video frames, hence it does not violate fair comparison
with other methods during testing.

For end-to-end training using Uniformer-32 [12], we
start with the pretrained model on the Kinetics-600 dataset
[4]. It was observed that utilizing all available layers in
Uniformer-32 causes the model to overfit rapidly to the
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training data, owing to the relatively smaller data sizes of
UCF-Crime and XD-Violence as compared to Kinetics-600.
In view of this, all but the last block, which comprises 7 at-
tention modules, are frozen in Uniformer-32. The learning
rate of 5e−5 is opted for UCF-Crime, and 5e−6 for XD-
Violence, with a weight decay of 0.005 for both datasets.

4. Experiments

4.1. Datasets

We evaluate our approach against the state-of-the-art
methods using two datasets: UCF-Crime [16], and XD-
Violence [20]. We adopt the datasets to fit the evalua-
tion criteria by following the procedures outlined in pre-
vious studies [10], [17], [19], [6]. UCF-Crime [16] in-
volves 1900 surveillance videos depicting 13 different types
of real-world anomalous events such as abuse, robbery, ar-
son, explosion, and road accidents. The training data con-
sists of 1610 videos with 810 videos labelled as nominal
and 800 videos labelled as anomalous. The dataset also in-
cludes 290 videos for testing with a mix of nominal and
anomalous videos. The XD-Violence [20] dataset is more
recent and larger than UCF-Crime. It consists of 4754
untrimmed videos with accompanying audio. The videos
cover a diverse range of sources, including surveillance
footage, movies, dash-cam recordings, and video games.
The training set for the wVAD setting includes 3954 videos
with over 1900 anomalous videos and over 2000 nominal
videos. To fairly evaluate the performance of our model,
we only utilized video information and discard audio infor-
mation.

4.2. Metrics

Following the common practice in the literature, we use
the Area Under ROC Curve (AUC) metric for evaluating
our performance on the UCF-Crime dataset and the Average
Precision (AP) metric, which is the area under the precision-
recall curve, on the XD-Violence dataset. By putting more
emphasis on number of anomalies, AP presents a more suit-
able metric for the inherently class-imbalanced anomaly de-
tection problems than AUC. Hence, it has been preferred
over AUC in the literature for the more recent XD-Violence
dataset. The results are reported by averaging over four
trials. We compute these metrics with window sizes (i.e.,
number of segments used for inference) ranging from 4 to
256 for three state-of-the-art methods, RTFM [17], S3R
[19], MGFN [6], to evaluate the change in their detection
performance when they are made to perform in real-time.
We also present computational efficiency results for our al-
gorithm in terms of frames per second (fps) to evaluate its
real-time inference capability.

Figure 7. Performance drop of state-of-the-art methods with de-
creasing decision period on UCF-Crime. Proposed method (RE-
WARD) provides a significantly improved real-time detection per-
formance.

Figure 8. Performance drop of state-of-the-art methods with de-
creasing decision period on XD-Violence. Proposed method (RE-
WARD) provides a significantly improved real-time detection per-
formance.

Method feature AUC % Decision Period (sec)
S3R [19] I3D 81.34 8.533
S3R [19] Uniformer-32 82.16 8.533

RTFM [17] I3D 80.63 8.533
RTFM [17] Uniformer-32 81.22 8.533
MGFN [6] I3D 81.76 8.533
MGFN [6] Uniformer-32 80.99 8.533
REWARD Uniformer-32 86.94 6.4

Table 1. Real-time detection performance of the proposed method
is 4.78% higher than the state-of-the-art methods on UCF-Crime.

4.3. Results

Figures 7 and 8 present the performances of S3R, RTFM,
and MGFN as a function of decision period using I3D and
Uniformer-32 features on the UCF-Crime and XD-violence
datasets, respectively. Tables 1 and 2 summarize the real-
time detection performance of state-of-the-art methods to-
gether with our method on both datasets. As seen in the re-
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Method feature AP % Decision Period (sec)
S3R [19] I3D 70.14 8.533
S3R [19] Uniformer-32 69.51 8.533

RTFM [17] I3D 72.6 8.533
RTFM [17] Uniformer-32 65.35 8.533
MGFN [6] I3D 73.17 8.533
MGFN [6] Uniformer-32 67.46 8.533
REWARD Uniformer-32 77.71 6.4

Table 2. Real-time detection performance of the proposed method
is 4.54% higher than the state-of-the-art methods on XD-Violence.

sults, the proposed approach outperforms the state-of-the-
art methods by a wide margin, especially on UCF-Crime,
where REWARD with 6.4 sec decision period improves
upon S3R with a decision period of 273 sec by more than
1% AUC. Note that for a fair comparison we evaluated the
state-of-the-art methods with both I3D and Uniformer fea-
ture extractors.

XD-Violence imposes some challenges on the action
recognition models. As shown in Figure 9, XD-Violence
consists of dynamic camera views with constant scene
changes, as opposed to the static camera views in UCF-
Crime. Also, the heterogeneity in video sources is much
larger in XD-Violence (movies, video games, dash-cam
recordings, etc.) than UCF-Crime (only surveillance
videos). It should be noted that, the performance of RE-
WARD is highly dependent on the used feature extractor
since no feature refinement step is involved in the current
version. This aspect will be further analyzed in Section 4.5.

Figure 9. Dynamic camera views in XD-Violence pose challenges
for video models compared to the static camera views in UCF-
Crime.

Figure 10 shows the final anomaly relevance score of
REWARD on sample nominal and anomalous videos from
both datasets.

4.4. Computational efficiency

By eliminating the need for feature encoding neural net-
works, the proposed REWARD method significantly re-
duces the number of parameters and processing time dur-
ing inference, leading to better real-time performance com-
pared to the existing methods. Table 3 presents the infer-
ence computation rate of 63.3 fps for our method based on
Uniformer-32 using a Nvidia RTX-2070 GPU. With 63.3

fps our method is able to process the 32 frames within
0.5 sec, resulting in a total decision delay of 6.9 sec. The
kNN computations during training took around 5 hours for
Uniformer-32 on an Intel Core i7 8700K CPU for the UCF-
Crime dataset.

Frames processed Processing time (s) Fps
Uniformer-32 16.18 1024 63.3

Decision period (s) Processing time (s) Decision delay (s)
REWARD 6.4 0.5 6.9

Table 3. Real-time computation performance of the proposed RE-
WARD method based on Uniformer-32.

4.5. Ablation Study

In this section, we discuss the impact of several factors
on the performance of REWARD.

End-to-End Training: To understand the contribution of
end-to-end (E2E) training, we compare the wVAD perfor-
mance of REWARD-E2E with a non-E2E version. Specifi-
cally, using the pre-trained features from Uniformer-32 we
trained an MLP with the same configuration as the one used
in self-supervision using the same labels provided by the
self-supervision mechanism, i.e., Va(I2) and Vn in Figure 5.
This transfer learning (TL) approach based on REWARD’s
self-supervision is called REWARD-TL. On both datasets,
end-to-end training improves the performance by a wide
margin, 1.64% on UCF-Crime and 2.46% on XD-Violence.

Model Feature Dataset AUC/AP
REWARD-TL Uniformer-32 UCF-Crime 85.30
REWARD-E2E Uniformer-32 UCF-Crime 86.94
REWARD-TL Uniformer-32 XD-Violence 75.25
REWARD-E2E Uniformer-32 XD-Violence 77.71

Table 4. Impact of end-to-end vs. transfer learning training on
wVAD performance.

Offline Performance: Since the existing methods fo-
cus on offline detection, we additionally assess the offline
anomaly detection performance of our approach by adopt-
ing a segmented video analysis strategy. In contrast to a
temporal sampling rate of 5 frames per second, we parti-
tion both the training and testing videos into 32 segments.
Each segment consists of 32 frames, resulting in a consis-
tent total of 1024 frames across videos of varying lengths.
The experimental process is reiterated while adhering to
the identical implementation details outlined in Section 3.3,
with the additional implementation of Savitzky-Golay fil-
ter [14] on predictions with a window size of four and a
polynomial order of one. Table 5 and Table 6 demonstrate
REWARD’s offline detection performance on UCF-Crime
and XD-Violence datasets, respectively. For long videos,
partitioning the video into 32 segments may result in long
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Figure 10. Anomaly score values of end-to-end trained REWARD based on Uniformer-32 on UCF-Crime and XD-Violence test videos.
Light orange areas indicate the ground truth anomalous frames.

segment duration (i.e., decision period), which may be pro-
hibitive for online (real-time) detection. Note that longer
segments with more contextual information improved RE-
WARD’s performance by 0.54% on UCF-Crime and by
2.59% on XD-Violence compared to the online version with
a fixed 6.4 sec decision period (cf. Tables 1 and 2).

Method Feature Year AUC(%)
Sultani et al. [16] I3D 2018 77.92
MIST [10] I3D 2021 82.30
Wu et al. [20] I3D 2020 82.44
RTFM [17] I3D 2021 84.30
S3R [19] I3D 2022 85.99
MGFN [6] I3D 2022 83.45
REWARD-E2E Uniformer-32 2023 87.48

Table 5. Offline detection performance comparison between the
proposed approach, REWARD-E2E, and the existing methods on
the UCF-Crime dataset.

Impact of feature aggregation: Feature aggregation step
(e.g., MTN) in existing methods is mainly what prevents
high real-time detection performance. Hence, we investi-
gate the impact of feature aggregation on the wVAD per-
formance of existing methods in relation to Uniformer-32
and I3D. Table 7 underscores the substantial deterioration
in wVAD performance of existing methods when the crit-
ical feature aggregation step is omitted, irrespective of the
employed model – I3D or Uniformer-32. Notably, the re-
sults suggests a more effective synergy between feature ag-
gregation and I3D.

5. Conclusion
We propose an end-to-end training approach, RE-

WARD (Real-Time End-to-End Weakly Supervised Video
Anomaly Relevance Detector), for real-time video anomaly
detection in the weakly supervised setting. REWARD trains
a large video model for the wVAD task, as opposed to

Method Feature Year AP(%)
Wu et al. [20] I3D 2020 75.41
RTFM [17] I3D 2021 77.81
S3R [19] I3D 2022 80.26
MGFN [6] I3D 2022 80.1
REWARD-E2E Uniformer-32 2023 80.30

Table 6. Offline detection performance comparison between the
proposed approach, REWARD-E2E, and the existing methods on
the XD-Violence dataset.

Model Feature Aggregation AUC/AP
S3R I3D ✗ 81.3
S3R I3D ✓ 85.99
S3R Uniformer-32 ✗ 80.1
S3R Uniformer-32 ✓ 84
RTFM I3D ✗ 81.94
RTFM I3D ✓ 84.30
RTFM Uniformer-32 ✗ 79.34
RTFM Uniformer-32 ✓ 82.75

Table 7. Impact of feature aggregation on wVAD performance.

the existing methods based on refining the feature extrac-
tors pretrained on action recognition datasets. The novel
technique enabling end-to-end training is a self-supervision
method based on kNN distance calculations. The experi-
mental results demonstrated that in a delay sensitive setting
where real-time decision is important, the proposed end-
to-end solution with a decision periof of 6.4 sec outper-
forms the state-of-the-art methods with a similar decision
period of 8.5 sec by 4.78% and 4.54% AUC on the com-
monly used UCF-Crime and XD-Violence datasets. More-
over, REWARD provides a more computationally efficient
pipeline for real-time inference by eliminating the popular
feature aggregation/refinement step in the literature.
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